
Linux Filesystems
in 21 days 45 minutes ...

Steve French
Linux Filesystems/Samba Design

IBM Linux Technology Center

http://svn.samba.org/samba/ftp/cifs-cvs/samplefs.tar.gz

A Step by Step Introduction
to Writing (or Understanding)

a Linux Filesystem

Legal Statem ent
This work represents the views of the author and does not
necessarily reflect the views of IBM Corporation.

The following terms are trademarks or registered
trademarks of International Business Machines Corporation
in the United States and/or other countries: IBM (logo), A
full list of U.S. trademarks owned by IBM may be found at
http://www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

Outline

● Who am I?
● FS background info
● Days 1 through 7, basic ops
● FS Data Structures
● Days 8 and 9
● FS Operations
● Days 10 - 11 finished our sample
● Days 12 - 21 – advanced ops

Who Am I?

● Author and maintainer of Linux cifs
vfs (for accessing Samba, Windows
and various SMB/CIFS based NAS
appliances)

● Member of the Samba team,
coauthor of CIFS Technical
Reference and former SNIA CIFS
Working Group chair

● Architect for
Filesystems/NFS/Samba in IBM LTC

Note ...

● Linux is constantly evolving,
interfaces change (even those
used by these small samples)!
– See Documentation directory of

kernel (e.g. feature-removal-
schedule.txt) or even better kernel
source itself if unsure about call

– The kernel page of lwn.net is
particularly useful: summarizing
kernel API changes

– Examples were built and/or lightly
tested on 2.6.16.11 and 2.6.18-rc1

What is a Filesystem
[“file system”]?

● “a file system is a set of abstract data types
that are implemented for the storage,
hierarchical organization, manipulation,
navigation, access, and retrieval of data”
[http://en.wikipedia.org/wiki/Filesystem]

● A Linux kernel module used to access files
and directories. A filesystem provides access
to this data for applications and system
programs through consistent, standard
interfaces exported by the VFS, and enables
access to data that may be stored
persistently on local media or on remote
network servers/devices, or even transient
data (such as debug data or kernel status)
stored temporarily in RAM or special devices.

http://en.wikipedia.org/wiki/Filesystem

Linux ... perfect fs
experimental platform?

● Linux is easily available and usable
filesystems can be smaller in Linux
than many other OS
– e.g. Ramfs is working 390 LOC

example (simpler shmem/tmpfs) and
stubs in fs/libfs.c make starting easy

– Filesystems average under 30KLOC
● Lots of samples in kernel:

– >12 (general) local filesystems (e.g.
ext2/3, reiserfs, xfs, UDF, ...)

– >16 special purpose local fs
– 8 network/cluster fs (nfs, cifs, ocfs2...)

Some common Linux FS
FS Name Type Approx. size (1000 LOC)
Ramfs Local 0.4
Sysfs Spec. purp. 2
Proc Spec. purp. 4
FUSE Spec. purp. 4
Smbfs (obsol)network 6
Ext3 Local 12
NTFS Local 17
JFS Local 18
CIFS Network 21
Reiserfs Local 22
NFS Network 24
OCFS2 Cluster 31
XFS Local 71

samplefs

● Goals for samplefs
– Small, understandable (yet extend

existing ramfs and rkfs samples)
– Easy to compile on reasonably

current (e.g. 2.6.9 or later) kernels
– Demonstrate basic data structures

and concepts that would help one:
● Implementing a new fs for Linux
● Experimenting with fs Linux
● Learning Linux fs concepts to help

debugging and/or tuning Linux

Day 1: Basic Module 101...

● A Linux filesystem kernel driver:
– Can be built as distinct module or
– Can be built into vmlinuz itself

● Kernel modules usually have:
– Entry in Kconfig (./fs/Kconfig)
– New directory (fs/samplefs)
– Makefile (fs/samplefs/Makefile)
– C Code to do module init/remove

Day 1 – key data structure

● We fill in struct file_system_type
and information describing our
filesystem kernel module
– Name of fs
– Method to allocate/kill superblock

Day 1: cont

● gunzip samplefs.tar.gz
● cd to root of kernel source tree
● If you have not built before and

.config file does not exist (create
config file that matches your
installed kernel or do “make
oldconfig”)

● make menuconfig (or equivalent)
– Select “File systems” then [M] for

“Sample Filesystem (Experimental)”
● make M=~/samplefs/day1

Day 1 - status

● What can we do with our little
sample now?

● (as root) /sbin/insmod
~/samplefs/day1/samplefs.ko

● /sbin/lsmod shows our module
loaded

● /sbin/rmmod will remove it

Day 2 Mount – What is a
superblock

● Each mount has a superblock
which contains information about
the mount

● Key data: “struct super_block”
and “struct vfsmount”

● Fill in superblock operations and
create the first (root) inode

Day 2 - continued

● make M=~/samplefs/day2
● Note:

– Addition of routines to allocate/free
superblock and parse mount options

– Your filesystem (like the case of
fs/ramfs) may not need to have fs
specific sb info or mount options but
this is provided as an example

Day 2 - status

● Mount code added, but mount
would oops in get_sb_nodev if
attempted

● Time to add debug code

Day 3 Control and debug
our filesystem

● “dmesg” displays kernel error/warning
messages

● Lets fix msg: “samplefs: module
license 'unspecified' taints kernel.”

● Also will add debug messages (errors,
warnings and/or information
messages) for various conditions

● Add optional enablement for /proc
which allows debug information and
settings to be easily displayed (may
move to sysfs and/or debugfs)

● make M=~/samplefs/day3

Day 3 - status
● Loading and unloading module now

displays inform. messages to dmesg
● Added an entry in /proc/fs for future

e.g. runtime debugging or status
information

● Added ability to parse parms passed
on module init

● Debug code allowed us to isolate
problem with iget line

● Example of debug statement
depending on menuconfig setting

Day 4 What is an inode?

● An inode is a representation of a
file and its metadata
(timestamps, type, size,
attributes) but not its name

● Inodes can represent files,
directories (containers of files),
symlinks and special files

● Fill in function pointers to inode
and file (open file) operations

● Fill in inode metadata (uid owner,
mode, file timestamps, etc.)

Day 4 - status

● We can mount now (e.g. “mount
-t samplefs any /mnt”)

● “cat /proc/mounts”
● “stat -f /mnt”
● “stat /mnt”

Day 5 What is a dentry?

● The dcache contains dentries, and
 provides a fast way to lookup
inodes based on a specific
pathname

● The dentries for individual path
components (parent directory,
parent of parent, etc.) of a file
name form a hierarchy

● A file inode can have multiple
different dentries pointing to it
(e.g. Due to hardlinks)

Day 5 - continued

● Our dentry operations do not save
negative dentries as most fs do

● If a filesystem exports same data
through other mechanisms (e.g.
Other nodes in a network or
cluster filesystem), then
d_revalidate would normally be
exported

● Our example adds case
insensitive support (mount option
ignorecase)

Day 5 - status

● Still need to add some operations,
time to work on inode operations

Day 6 simple inode
operations

● Time to add
– create
– mkdir
– unlink (delete)
– rmdir
– mknod

Day 6 - status

● Now ... like magic, we can do
simple operations like mkdir and
mknod

● But readdir (“ls /mnt”) yields “Not
a directory”

● And open (“touch /mnt/file ; cat
/mnt/file”) gets “Invalid argument

Day 7 simple file
operations

● Files AND directories have file
operations

● Those ops for the directory (to support
e.g. Readdir) are easy in this type of
Linux fs ... but what about for files?

● We could add the simplest set of file
operations

– Read
– Write
– (some fs also need seek and fsync)

● But Linux has a powerful page cache
that is not much harder to use for this

Day 7 - status

● We can now do “ls /mnt1” (after
creating some test files) and get
expected output

● Now for some review of the
various structures we have talked
about and their relationship ...

Source: http://www.geocities.com/ravikiran_uvs/articles/rkfs.html

Day 8 Opening a file

● A “File” (struct file) represents an
open instance of an inode (for a
particular pathname, with
particular open flags)

● The call for “open” (or “create” or
“mkdir” etc.) in userspace do not
map atomically into just one
corresponding call into the fs
unfortunately, but Linux
filesystems can use the “intent”
fields on lookup and create to
improve efficiency

Day 9 Introducing the
page cache

● Lets add calls to our driver to use
the generic page cache
– File operations map via

● Generic_file_read
● generic_file_write

– To readpage
– And writepage
– With or without mmap

Day 9 - status

● We can create files, write data
and read data and do most
common file operations

● So lets review how these
operations tie together

Source: http://www.geocities.com/ravikiran_uvs/articles/rkfs.html

Day 10 Multipage
operations

● Linux has two interesting high
performance page cache read/write op

– Readpages (nine filesystems use)
– Writepages (eight filesystems use

including ext3, nfs and cifs)
● Useful for coalescing reads/writes

together (NB Some network
filesystems like cifs typically negotiate
buffer sizes much larger than a 4K
page so this allows more efficiency)

● For cifs (unlike for samplefs) using
writepages dramatically improved
write performance over GigE

Day 11 Hardlinks and
symlinks

● Adding hardlinks & symlinks easy
● Status after day 11 ... most

important operations work:

smf-t41p:/usr/src/linux-2.6.16.11-7 # ls /mnt1 -l
total 0
drwxr-xr-x 2 root root 0 2006-07-18 23:53 dir
drwxr-xr-x 2 root root 0 2006-07-18 23:53 dir1
drwxr-xr-x 2 root root 0 2006-07-18 23:55 fifo1
-rw-r--r-- 1 root root 0 2006-07-18 23:53 file
-rw-r--r-- 3 root root 0 2006-07-18 23:53 file1
-rw-r--r-- 3 root root 0 2006-07-18 23:53 file2
lrwxrwxrwx 1 root root 11 2006-07-18 23:54 file3 -> /mnt1/file1
-rw-r--r-- 3 root root 0 2006-07-18 23:53 hardlinktofile1

It works!

Halfway through 21 days
we have a complete FS!

● Good stopping point for our code
sample ... (otherwise the sample
could get too complex, or require
a different backend storage
mechanism)

● But
– Some additional fs concepts may be

helpful
– many Linux filesystems implement

more advanced features that are
worth discussing in more detail

Day 12 inodes continued -
Changing inode metadata
● Setattr is a key call

– Based on the iattr struct passed in
can change

● Uid, gid, mode, timestamps, size,
● Linux has three timestamps (atime,

mtime, ctime) does not have a way of
returning create timestamp

● Linux allows an fs to specify a time
granularity via s_time_gran mask (cifs
e.g. reports time in 100 nanosecond
units, jfs uses even better 1 ns, but
ext2/ext3 timestamps much worse)

● Other “attributes” are changeable
through xattrs and ioctls

Day 13 readdir

● Especially for network filesystems
“ls” can cause “readdir” storms
(hurting performance) by
immediately following readdir
with lots of expensive stat calls
(unless the stat results are
requested together, or cached)

Day 14 byte range locks,
leases/distributed caching
● Linux supports the standard

POSIX byte range locking but also
supports “leases”

● F_SETLEASE, F_GETLEASE, used
by programs like Samba server,
help allow servers to offer safe
distributed caching (e.g. “Oplock”
[cifs] and “delegations” [nfs4]) for
network/cluster filesystems

Day 15 Dir change
tracking – inotify, d_notify
● There are two distinct

mechanisms for change
notification
– Fcntl F_NOTIFY
– And the newer, more general inotify

Day 16 kernel memory,
object tracking

● Filesystems can take advantage
of key mm features of Linux
– Memory pools
– Slab allocations (named, easy to

track) for fixed size allocations
– Kmalloc
– Various optional Linux memory leak

debugging facilities

Day 17 Address space
mapping

● The few places where filesystems
are not passed kernel memory,
extra care must be taken to
read/write to user memory
– copy_to_user
– copy_from_user

● Operations:
– Read, Write (not using page cache)
– Readlink
– Some fcntls

Day 18 xattrs

● Xatts, similar in some ways to
OS/2 “EAs” allow additional inode
metadata to be stored

● This is particular helpful to Samba
to store inode information that
has no direct equivalent in POSIX,
but a different category
(namespace) also is helpful for
storing security information (e.g.
SELinux) and ACLs

Day 19 POSIX ACLs,
permissions

● Since Unix Mode bits are primitive,
richer access control facility was
implemented (based on an expired
POSIX draft for ACLs).

● Now working w/CITI, Andreas et al to
offer optional standard NFS4 ACLs
(NFSv4 ACLs loosely based on CIFS)

● POSIX ACLs are handled via xattr
interface, but can be stored differently
internal to the filesystem. A few
filesystems (including CIFS and NFS)
can get/set them natively to Linux
servers

Day 19 continued

● ACL mapping works ok for:
– POSIX ACL <-> Mode

● Being researched are the
mappings to/from:
– POSIX ACL <-> CIFS/NFSv4 ACL
– CIFS/NFSv4 <->Mode

● Some Linux (out of kernel) fs such
as GPFS already include NFSv4
ACL support in their Linux client

Day 20 Misc entry points:
fcntl, ioctl

● Fcntl useful not just for
get/setlease

● Ioctl includes two “semi-
standard” calls which fs should
consider implementing
– getflags/setflags (chattr, lsattr on

some other platforms)

Day 21 FS communication
with userspace

● Various options including
– Notify/read/write on a pseudofile
– “connector” upcall (via cn.ko) which

is nice in order to avoid netlink
– Dbus
– Ioctl (not recommended)

Future ...

● That is why we are here
● Linux filesystems continue to

evolve and improve
● Research continues across the

community in many key areas
important for fs:
– Large page, perf improvements
– Duplicate mount optimizations
– Offline caching
– Credential management
– Improved network and cluster fs ...

Thank you for your time!

For further reading ...

● General kernel module bckgrnd
– O'Reilly books:

● Linux Device Drivers 3rd edition (also online at
http://lwn.net/Kernel/LDD3/)

● Understanding the Linux Kernel 3rd edition

– Prentice Hall book:

● Linux Debugging and Performance Tuning: Tips
and Techniques
(http://vig.prenhall.com/catalog/academic/prod
uct/0,1144,0131492470,00.html)

– Kernel API http://lwn.net/Articles/2.6-kernel-api/

– Linux Kernel Module Programming Guide (
http://www.tldp.org/LDP/lkmpg/2.6/html/)

– Linux kernel documentation (Documentation
directory of kernel source tree)

http://lwn.net/Kernel/LDD3/
http://lwn.net/Articles/2.6-kernel-api/
http://www.tldp.org/LDP/lkmpg/2.6/html/

For further reading (cont)

● Linux Filesystems
– Documentation/filesystems/vfs.txt

– http://www.geocities.com/ravikiran_uvs/articles/rkfs.html

– This presentation and samples:

● http://linux-cifs.samba.org/cifs/samplefs.html
● http://svn.samba.org/samba/ftp/cifs-cvs/samplefs.tar.gz
● http://svn.samba.org/samba/ftp/cifs-cvs/ols2006-fs-

tutorial-smf.odp

http://www.geocities.com/ravikiran_uvs/articles/rkfs.html
http://svn.samba.org/samba/ftp/cifs-cvs/samplefs.tar.gz

