Back to Multiple platform build/check report for BioC 3.19: simplified long |
|
This page was generated on 2024-06-11 14:42 -0400 (Tue, 11 Jun 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.4.0 (2024-04-24) -- "Puppy Cup" | 4757 |
palomino3 | Windows Server 2022 Datacenter | x64 | 4.4.0 (2024-04-24 ucrt) -- "Puppy Cup" | 4491 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.4.0 (2024-04-24) -- "Puppy Cup" | 4522 |
kjohnson3 | macOS 13.6.5 Ventura | arm64 | 4.4.0 (2024-04-24) -- "Puppy Cup" | 4468 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 987/2300 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.10.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.6.5 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.10.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.10.0.tar.gz |
StartedAt: 2024-06-09 20:56:25 -0400 (Sun, 09 Jun 2024) |
EndedAt: 2024-06-09 21:01:12 -0400 (Sun, 09 Jun 2024) |
EllapsedTime: 287.2 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.10.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck’ * using R version 4.4.0 (2024-04-24) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.1 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.10.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 34.745 1.808 36.762 FSmethod 33.184 1.798 35.098 corr_plot 33.195 1.680 34.986 pred_ensembel 13.744 0.506 10.159 enrichfindP 0.449 0.061 8.823 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.0 (2024-04-24) -- "Puppy Cup" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 98.158285 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.802788 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.471831 final value 93.915746 converged Fitting Repeat 4 # weights: 103 initial value 101.383071 iter 10 value 93.873759 final value 93.873028 converged Fitting Repeat 5 # weights: 103 initial value 115.645371 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 105.367596 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 98.297565 final value 93.915746 converged Fitting Repeat 3 # weights: 305 initial value 108.328088 iter 10 value 93.264204 iter 20 value 92.332967 iter 30 value 92.331664 final value 92.331645 converged Fitting Repeat 4 # weights: 305 initial value 99.023805 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 98.570715 iter 10 value 94.053352 final value 94.052911 converged Fitting Repeat 1 # weights: 507 initial value 100.038836 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 110.678308 final value 93.511561 converged Fitting Repeat 3 # weights: 507 initial value 102.090910 iter 10 value 87.852327 iter 20 value 86.872207 iter 30 value 86.872036 final value 86.872031 converged Fitting Repeat 4 # weights: 507 initial value 103.957840 final value 93.697740 converged Fitting Repeat 5 # weights: 507 initial value 123.312580 final value 93.915746 converged Fitting Repeat 1 # weights: 103 initial value 97.286069 iter 10 value 94.013634 iter 20 value 91.570867 iter 30 value 90.921915 iter 40 value 88.682066 iter 50 value 86.546398 iter 60 value 85.752856 iter 70 value 85.715725 iter 80 value 85.714121 iter 80 value 85.714120 iter 80 value 85.714120 final value 85.714120 converged Fitting Repeat 2 # weights: 103 initial value 103.232323 iter 10 value 93.942246 iter 20 value 89.467438 iter 30 value 88.986877 iter 40 value 88.773814 iter 50 value 86.256907 iter 60 value 85.184216 iter 70 value 84.264328 iter 80 value 83.818990 iter 90 value 83.736969 iter 100 value 83.678369 final value 83.678369 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.245363 iter 10 value 94.051360 iter 20 value 88.646019 iter 30 value 87.217344 iter 40 value 86.825577 iter 50 value 86.642767 iter 60 value 86.023312 iter 70 value 85.718244 final value 85.714120 converged Fitting Repeat 4 # weights: 103 initial value 100.175922 iter 10 value 94.056335 iter 20 value 93.137382 iter 30 value 91.604055 iter 40 value 88.459231 iter 50 value 85.856667 iter 60 value 85.548190 iter 70 value 84.611951 iter 80 value 84.327185 iter 90 value 84.265519 iter 100 value 84.239113 final value 84.239113 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.740793 iter 10 value 93.862607 iter 20 value 89.308360 iter 30 value 89.065611 iter 40 value 89.011476 iter 50 value 88.728845 iter 60 value 86.060530 iter 70 value 85.881820 iter 80 value 84.728097 iter 90 value 84.330217 iter 100 value 84.208055 final value 84.208055 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 104.621063 iter 10 value 94.068129 iter 20 value 93.822135 iter 30 value 93.742427 iter 40 value 89.326189 iter 50 value 89.222775 iter 60 value 85.081002 iter 70 value 84.172802 iter 80 value 83.591991 iter 90 value 83.153975 iter 100 value 83.000591 final value 83.000591 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.671860 iter 10 value 92.249331 iter 20 value 91.552082 iter 30 value 91.328605 iter 40 value 90.423035 iter 50 value 88.168175 iter 60 value 86.719017 iter 70 value 86.026261 iter 80 value 85.508710 iter 90 value 84.830868 iter 100 value 83.995039 final value 83.995039 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.742973 iter 10 value 94.502583 iter 20 value 91.864063 iter 30 value 85.053329 iter 40 value 83.736974 iter 50 value 83.511527 iter 60 value 83.226140 iter 70 value 83.211401 iter 80 value 83.145491 iter 90 value 83.119164 iter 100 value 83.101790 final value 83.101790 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.159968 iter 10 value 94.061491 iter 20 value 86.921058 iter 30 value 85.456981 iter 40 value 84.129751 iter 50 value 83.376021 iter 60 value 83.076176 iter 70 value 82.681587 iter 80 value 82.457843 iter 90 value 82.424100 iter 100 value 82.418357 final value 82.418357 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.232851 iter 10 value 94.025168 iter 20 value 92.973335 iter 30 value 86.056345 iter 40 value 84.713356 iter 50 value 83.367213 iter 60 value 82.904716 iter 70 value 82.697570 iter 80 value 82.507908 iter 90 value 82.336451 iter 100 value 82.239324 final value 82.239324 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.362888 iter 10 value 94.056048 iter 20 value 86.039621 iter 30 value 85.665703 iter 40 value 84.427912 iter 50 value 83.849088 iter 60 value 83.144665 iter 70 value 82.869798 iter 80 value 82.689361 iter 90 value 82.646447 iter 100 value 82.589017 final value 82.589017 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.535350 iter 10 value 91.680774 iter 20 value 87.162451 iter 30 value 86.058356 iter 40 value 85.574734 iter 50 value 84.871569 iter 60 value 83.863730 iter 70 value 83.142768 iter 80 value 82.883905 iter 90 value 82.711285 iter 100 value 82.584827 final value 82.584827 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.575302 iter 10 value 93.280111 iter 20 value 92.470847 iter 30 value 90.444371 iter 40 value 86.065163 iter 50 value 85.019368 iter 60 value 84.539488 iter 70 value 83.679043 iter 80 value 83.250118 iter 90 value 83.025714 iter 100 value 82.644592 final value 82.644592 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.362537 iter 10 value 93.954517 iter 20 value 87.937939 iter 30 value 86.843202 iter 40 value 84.364973 iter 50 value 83.645174 iter 60 value 83.240986 iter 70 value 82.894885 iter 80 value 82.680082 iter 90 value 82.531835 iter 100 value 82.414400 final value 82.414400 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 132.294727 iter 10 value 93.696932 iter 20 value 88.417370 iter 30 value 86.338600 iter 40 value 85.315610 iter 50 value 84.667456 iter 60 value 84.411005 iter 70 value 84.188150 iter 80 value 83.995148 iter 90 value 83.773393 iter 100 value 83.051681 final value 83.051681 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 116.250269 iter 10 value 92.277973 iter 20 value 91.427474 iter 30 value 91.352936 final value 91.352579 converged Fitting Repeat 2 # weights: 103 initial value 101.415930 final value 94.054639 converged Fitting Repeat 3 # weights: 103 initial value 96.579459 final value 94.054479 converged Fitting Repeat 4 # weights: 103 initial value 95.940955 iter 10 value 93.917504 iter 20 value 93.891459 iter 30 value 85.055774 iter 40 value 84.922215 iter 50 value 84.442317 iter 60 value 84.074552 final value 84.074245 converged Fitting Repeat 5 # weights: 103 initial value 118.260275 final value 94.054537 converged Fitting Repeat 1 # weights: 305 initial value 94.438381 iter 10 value 94.058280 iter 20 value 94.053242 iter 30 value 92.502011 iter 40 value 87.322519 iter 50 value 85.425720 iter 60 value 85.172368 iter 70 value 85.171297 iter 70 value 85.171297 final value 85.171297 converged Fitting Repeat 2 # weights: 305 initial value 130.032368 iter 10 value 94.057759 iter 20 value 93.538265 iter 30 value 85.256711 final value 85.241758 converged Fitting Repeat 3 # weights: 305 initial value 97.740326 iter 10 value 94.062550 iter 20 value 94.047083 iter 30 value 88.365146 iter 40 value 84.882525 iter 50 value 84.154614 iter 60 value 83.910294 iter 70 value 83.377565 iter 80 value 82.470117 iter 90 value 82.234242 iter 100 value 82.232407 final value 82.232407 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 111.297834 iter 10 value 94.057150 iter 20 value 93.645294 iter 30 value 93.024268 iter 40 value 92.168032 iter 50 value 84.123025 iter 60 value 83.859945 iter 70 value 83.858845 iter 80 value 83.857819 iter 90 value 83.821636 iter 100 value 83.821527 final value 83.821527 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.917783 iter 10 value 94.057892 iter 20 value 93.814879 iter 30 value 93.697814 final value 93.697630 converged Fitting Repeat 1 # weights: 507 initial value 99.271128 iter 10 value 93.923698 iter 20 value 93.714741 iter 30 value 93.693135 iter 40 value 93.459870 iter 50 value 84.198049 iter 60 value 82.817405 iter 70 value 82.774981 iter 80 value 82.771283 iter 90 value 82.770961 iter 100 value 82.211596 final value 82.211596 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.232694 iter 10 value 93.649389 iter 20 value 90.384673 iter 30 value 86.105553 iter 40 value 86.029926 final value 86.029221 converged Fitting Repeat 3 # weights: 507 initial value 94.625195 iter 10 value 93.057399 iter 20 value 92.175381 iter 30 value 92.145690 iter 40 value 92.132047 iter 50 value 91.954714 iter 60 value 90.510174 iter 70 value 90.354288 iter 80 value 90.340573 iter 90 value 90.337605 iter 100 value 90.336985 final value 90.336985 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.907730 iter 10 value 94.059508 iter 20 value 93.822304 iter 30 value 88.559466 iter 40 value 88.025611 final value 88.007826 converged Fitting Repeat 5 # weights: 507 initial value 103.279148 iter 10 value 94.060888 iter 20 value 94.035760 iter 30 value 86.899059 iter 40 value 86.878026 final value 86.877874 converged Fitting Repeat 1 # weights: 103 initial value 107.765411 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.531266 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 109.044948 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 101.715707 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 104.509433 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 99.611618 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 95.875771 iter 10 value 93.728996 iter 20 value 93.726258 iter 30 value 93.090468 final value 92.528601 converged Fitting Repeat 3 # weights: 305 initial value 95.906006 final value 94.275362 converged Fitting Repeat 4 # weights: 305 initial value 98.636989 final value 94.275362 converged Fitting Repeat 5 # weights: 305 initial value 97.036315 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 97.237561 iter 10 value 91.131380 iter 20 value 87.617901 iter 30 value 87.610929 iter 40 value 87.609555 iter 50 value 87.609464 iter 50 value 87.609464 iter 50 value 87.609464 final value 87.609464 converged Fitting Repeat 2 # weights: 507 initial value 99.212901 iter 10 value 94.483558 iter 20 value 92.166073 iter 30 value 91.671001 iter 40 value 91.667191 final value 91.667169 converged Fitting Repeat 3 # weights: 507 initial value 109.040895 final value 93.903448 converged Fitting Repeat 4 # weights: 507 initial value 101.610190 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 95.425317 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 106.381681 iter 10 value 94.490981 iter 20 value 94.305663 iter 30 value 93.582962 iter 40 value 93.370481 iter 50 value 93.346073 iter 60 value 92.438722 iter 70 value 90.758128 iter 80 value 88.059636 iter 90 value 86.390165 iter 100 value 85.196321 final value 85.196321 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 106.258577 iter 10 value 94.431565 iter 20 value 93.212691 iter 30 value 87.779043 iter 40 value 85.706709 iter 50 value 85.230340 iter 60 value 85.197181 iter 70 value 85.171122 iter 80 value 85.137272 iter 90 value 84.581682 iter 100 value 83.845320 final value 83.845320 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.376719 iter 10 value 94.479520 iter 20 value 90.647057 iter 30 value 85.801795 iter 40 value 84.958669 iter 50 value 84.709685 iter 60 value 84.574449 iter 70 value 84.552226 final value 84.552216 converged Fitting Repeat 4 # weights: 103 initial value 103.306981 iter 10 value 94.441641 iter 20 value 93.774019 iter 30 value 88.355195 iter 40 value 87.535494 iter 50 value 86.844714 iter 60 value 83.755727 iter 70 value 83.746169 final value 83.745712 converged Fitting Repeat 5 # weights: 103 initial value 102.737808 iter 10 value 94.480499 iter 20 value 94.017081 iter 30 value 93.778830 iter 40 value 93.669704 iter 50 value 85.563474 iter 60 value 83.625652 iter 70 value 82.657078 iter 80 value 82.042722 iter 90 value 81.529695 iter 100 value 81.370840 final value 81.370840 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 105.704001 iter 10 value 94.218329 iter 20 value 92.955535 iter 30 value 84.687176 iter 40 value 83.267466 iter 50 value 82.819780 iter 60 value 82.317386 iter 70 value 81.949710 iter 80 value 81.464303 iter 90 value 80.257559 iter 100 value 79.949572 final value 79.949572 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.509838 iter 10 value 94.487024 iter 20 value 94.452767 iter 30 value 93.716894 iter 40 value 85.151877 iter 50 value 82.512265 iter 60 value 81.972704 iter 70 value 80.657400 iter 80 value 80.077100 iter 90 value 79.862825 iter 100 value 79.707165 final value 79.707165 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.007907 iter 10 value 94.493922 iter 20 value 94.079364 iter 30 value 93.730254 iter 40 value 86.979887 iter 50 value 86.206289 iter 60 value 84.282979 iter 70 value 83.766964 iter 80 value 82.280913 iter 90 value 80.976124 iter 100 value 80.141567 final value 80.141567 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 121.716789 iter 10 value 94.770216 iter 20 value 94.546709 iter 30 value 87.762205 iter 40 value 85.687431 iter 50 value 84.533630 iter 60 value 83.950931 iter 70 value 83.541935 iter 80 value 83.487990 iter 90 value 83.033714 iter 100 value 81.937531 final value 81.937531 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 113.458883 iter 10 value 94.501311 iter 20 value 94.366401 iter 30 value 86.912192 iter 40 value 82.982898 iter 50 value 81.502879 iter 60 value 80.787545 iter 70 value 80.534196 iter 80 value 80.153350 iter 90 value 79.892600 iter 100 value 79.458696 final value 79.458696 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.077012 iter 10 value 94.494483 iter 20 value 91.726388 iter 30 value 86.352332 iter 40 value 84.022532 iter 50 value 81.566855 iter 60 value 79.880356 iter 70 value 79.515463 iter 80 value 79.277515 iter 90 value 79.014599 iter 100 value 78.814782 final value 78.814782 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 121.339025 iter 10 value 94.599047 iter 20 value 93.701037 iter 30 value 92.724117 iter 40 value 90.575319 iter 50 value 83.405939 iter 60 value 82.402040 iter 70 value 81.340020 iter 80 value 80.857324 iter 90 value 80.396954 iter 100 value 80.265021 final value 80.265021 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.155621 iter 10 value 94.549050 iter 20 value 94.342179 iter 30 value 91.605768 iter 40 value 84.202993 iter 50 value 81.362653 iter 60 value 80.881800 iter 70 value 80.612901 iter 80 value 80.385422 iter 90 value 80.040577 iter 100 value 79.580104 final value 79.580104 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.641682 iter 10 value 94.922281 iter 20 value 89.303107 iter 30 value 85.205043 iter 40 value 84.825426 iter 50 value 83.518173 iter 60 value 81.148512 iter 70 value 80.355854 iter 80 value 79.976319 iter 90 value 79.652931 iter 100 value 79.588415 final value 79.588415 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.213789 iter 10 value 95.644466 iter 20 value 85.705184 iter 30 value 84.934873 iter 40 value 83.548517 iter 50 value 82.958439 iter 60 value 81.734368 iter 70 value 81.033038 iter 80 value 80.990628 iter 90 value 80.934865 iter 100 value 80.912075 final value 80.912075 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.416546 final value 94.485827 converged Fitting Repeat 2 # weights: 103 initial value 95.081729 final value 94.486110 converged Fitting Repeat 3 # weights: 103 initial value 100.200912 final value 94.485821 converged Fitting Repeat 4 # weights: 103 initial value 97.332776 final value 94.485706 converged Fitting Repeat 5 # weights: 103 initial value 109.284391 iter 10 value 94.485932 iter 20 value 94.484236 iter 20 value 94.484235 iter 20 value 94.484235 final value 94.484235 converged Fitting Repeat 1 # weights: 305 initial value 98.273900 iter 10 value 93.256769 iter 20 value 88.320345 iter 30 value 87.093453 iter 40 value 87.000779 final value 87.000659 converged Fitting Repeat 2 # weights: 305 initial value 105.144075 iter 10 value 94.521627 iter 20 value 94.514166 iter 30 value 94.360160 iter 40 value 85.902964 iter 50 value 83.452072 iter 60 value 81.052758 iter 70 value 80.466223 iter 80 value 79.964524 iter 90 value 79.455208 iter 100 value 79.261010 final value 79.261010 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.623046 iter 10 value 94.438251 iter 20 value 92.610438 iter 30 value 91.685044 iter 40 value 87.096396 iter 50 value 85.615751 iter 60 value 84.732212 iter 70 value 84.728548 iter 80 value 84.294448 iter 90 value 84.256145 iter 100 value 84.231601 final value 84.231601 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.002019 iter 10 value 93.642726 iter 20 value 93.639339 iter 30 value 93.466588 iter 40 value 90.227695 iter 50 value 89.260291 iter 60 value 83.393402 iter 70 value 81.557183 iter 80 value 81.489316 final value 81.489268 converged Fitting Repeat 5 # weights: 305 initial value 99.267767 iter 10 value 94.110447 iter 20 value 94.100738 iter 30 value 94.085651 iter 40 value 93.655830 iter 50 value 93.474555 iter 60 value 93.439742 iter 70 value 93.335764 iter 80 value 90.371174 iter 90 value 90.028344 iter 100 value 82.180365 final value 82.180365 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 101.048481 iter 10 value 94.064565 iter 20 value 91.500041 iter 30 value 91.493273 iter 40 value 90.317514 iter 50 value 85.594113 iter 60 value 85.532411 iter 70 value 85.531719 iter 80 value 84.058164 iter 90 value 82.258038 iter 100 value 82.002273 final value 82.002273 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.262133 iter 10 value 94.492366 iter 20 value 94.484169 iter 30 value 94.048554 iter 40 value 93.550967 iter 50 value 84.427253 iter 60 value 83.866693 iter 70 value 83.864487 iter 80 value 83.863778 final value 83.863383 converged Fitting Repeat 3 # weights: 507 initial value 126.311974 iter 10 value 94.492858 iter 20 value 94.485737 iter 30 value 92.592191 iter 40 value 90.274116 iter 50 value 90.250474 iter 60 value 88.234137 iter 70 value 82.707073 iter 80 value 81.950653 iter 90 value 81.848077 iter 100 value 81.847605 final value 81.847605 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 98.340918 iter 10 value 90.975430 iter 20 value 84.280146 iter 30 value 83.781283 iter 40 value 83.774466 iter 50 value 83.771489 final value 83.770953 converged Fitting Repeat 5 # weights: 507 initial value 112.587252 iter 10 value 93.645206 iter 20 value 93.639308 iter 30 value 93.467893 iter 40 value 93.409677 final value 93.409570 converged Fitting Repeat 1 # weights: 103 initial value 108.164732 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.754180 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 110.788574 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.249601 final value 94.484210 converged Fitting Repeat 5 # weights: 103 initial value 95.762366 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 101.549171 final value 93.813953 converged Fitting Repeat 2 # weights: 305 initial value 110.039714 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 99.212376 iter 10 value 93.784514 final value 93.783647 converged Fitting Repeat 4 # weights: 305 initial value 98.367602 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 100.547886 final value 94.275362 converged Fitting Repeat 1 # weights: 507 initial value 98.781760 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 128.605840 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 101.428565 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 135.819402 iter 10 value 94.275363 iter 10 value 94.275362 iter 10 value 94.275362 final value 94.275362 converged Fitting Repeat 5 # weights: 507 initial value 97.746528 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 107.261171 iter 10 value 94.488302 iter 20 value 93.441762 iter 30 value 90.221450 iter 40 value 87.130954 iter 50 value 84.222928 iter 60 value 83.043090 iter 70 value 81.529855 iter 80 value 80.942789 iter 90 value 80.873321 final value 80.873267 converged Fitting Repeat 2 # weights: 103 initial value 96.960206 iter 10 value 94.488847 iter 20 value 94.412059 iter 30 value 87.046774 iter 40 value 85.235153 iter 50 value 83.722164 iter 60 value 83.105349 iter 70 value 83.019415 iter 80 value 82.962858 final value 82.962421 converged Fitting Repeat 3 # weights: 103 initial value 99.715448 iter 10 value 94.487822 iter 20 value 93.304012 iter 30 value 90.159590 iter 40 value 85.817724 iter 50 value 84.659057 iter 60 value 84.395522 iter 70 value 83.356401 final value 83.086712 converged Fitting Repeat 4 # weights: 103 initial value 103.922733 iter 10 value 94.492388 iter 20 value 87.512456 iter 30 value 85.860707 iter 40 value 85.442173 iter 50 value 84.243984 iter 60 value 83.256038 iter 70 value 82.963551 iter 80 value 82.962423 final value 82.962421 converged Fitting Repeat 5 # weights: 103 initial value 100.199955 iter 10 value 94.485819 iter 20 value 88.043304 iter 30 value 87.074576 iter 40 value 86.219063 final value 86.137350 converged Fitting Repeat 1 # weights: 305 initial value 112.147521 iter 10 value 94.740670 iter 20 value 94.440257 iter 30 value 94.094049 iter 40 value 93.878983 iter 50 value 89.928779 iter 60 value 85.936535 iter 70 value 82.911841 iter 80 value 81.273188 iter 90 value 80.864037 iter 100 value 80.550024 final value 80.550024 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 114.926254 iter 10 value 94.351479 iter 20 value 91.872939 iter 30 value 88.125581 iter 40 value 85.934169 iter 50 value 85.627018 iter 60 value 83.621805 iter 70 value 83.555219 iter 80 value 83.492557 iter 90 value 83.433746 iter 100 value 82.234150 final value 82.234150 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.011665 iter 10 value 93.614343 iter 20 value 84.614414 iter 30 value 83.703441 iter 40 value 83.171516 iter 50 value 82.509913 iter 60 value 82.043110 iter 70 value 81.579164 iter 80 value 81.383613 iter 90 value 81.002364 iter 100 value 80.364590 final value 80.364590 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.123084 iter 10 value 94.837589 iter 20 value 92.076627 iter 30 value 87.428263 iter 40 value 86.965207 iter 50 value 86.485505 iter 60 value 86.339409 iter 70 value 84.283019 iter 80 value 83.054963 iter 90 value 82.635302 iter 100 value 82.368638 final value 82.368638 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.994766 iter 10 value 94.346284 iter 20 value 93.957102 iter 30 value 87.973189 iter 40 value 87.816391 iter 50 value 86.302638 iter 60 value 84.635325 iter 70 value 82.315665 iter 80 value 81.082253 iter 90 value 80.521449 iter 100 value 80.067017 final value 80.067017 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 124.855640 iter 10 value 92.149912 iter 20 value 85.256161 iter 30 value 83.353827 iter 40 value 82.822884 iter 50 value 81.596827 iter 60 value 80.929940 iter 70 value 80.457568 iter 80 value 80.338237 iter 90 value 80.306752 iter 100 value 80.209445 final value 80.209445 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.611747 iter 10 value 94.500156 iter 20 value 91.788743 iter 30 value 91.560819 iter 40 value 88.927710 iter 50 value 85.562257 iter 60 value 82.570818 iter 70 value 81.307125 iter 80 value 81.176553 iter 90 value 80.815688 iter 100 value 80.254096 final value 80.254096 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.742773 iter 10 value 94.866653 iter 20 value 93.378445 iter 30 value 87.828184 iter 40 value 85.755517 iter 50 value 84.278469 iter 60 value 83.303359 iter 70 value 82.671830 iter 80 value 81.483109 iter 90 value 81.321834 iter 100 value 80.648901 final value 80.648901 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 120.842395 iter 10 value 94.974164 iter 20 value 90.673450 iter 30 value 83.932110 iter 40 value 83.368386 iter 50 value 83.053351 iter 60 value 82.562938 iter 70 value 81.887020 iter 80 value 80.712171 iter 90 value 80.395594 iter 100 value 80.222052 final value 80.222052 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.476848 iter 10 value 94.798944 iter 20 value 88.550432 iter 30 value 88.036952 iter 40 value 83.469891 iter 50 value 80.833602 iter 60 value 80.516825 iter 70 value 80.297944 iter 80 value 80.039984 iter 90 value 79.964168 iter 100 value 79.861538 final value 79.861538 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 108.370006 iter 10 value 94.276901 iter 10 value 94.276900 iter 10 value 94.276900 final value 94.276900 converged Fitting Repeat 2 # weights: 103 initial value 116.237800 final value 94.485771 converged Fitting Repeat 3 # weights: 103 initial value 112.785330 final value 94.485876 converged Fitting Repeat 4 # weights: 103 initial value 95.336500 final value 94.486011 converged Fitting Repeat 5 # weights: 103 initial value 101.566041 iter 10 value 94.485874 iter 20 value 94.484124 iter 30 value 88.601409 iter 40 value 88.264918 iter 50 value 88.173339 final value 88.169480 converged Fitting Repeat 1 # weights: 305 initial value 99.433988 iter 10 value 85.188199 iter 20 value 85.109967 iter 30 value 84.984220 iter 40 value 84.962996 iter 50 value 84.962168 iter 60 value 84.960973 iter 70 value 84.960245 iter 70 value 84.960245 final value 84.960245 converged Fitting Repeat 2 # weights: 305 initial value 100.110407 iter 10 value 86.444197 iter 20 value 85.736228 iter 30 value 84.818529 iter 40 value 84.661422 iter 50 value 84.660455 iter 60 value 84.658421 iter 70 value 84.656975 iter 80 value 84.651017 iter 90 value 84.494616 final value 84.488525 converged Fitting Repeat 3 # weights: 305 initial value 101.169562 iter 10 value 94.280506 iter 20 value 94.276170 iter 30 value 94.125626 iter 40 value 86.556702 iter 50 value 86.510373 iter 60 value 84.557159 iter 70 value 84.528580 iter 80 value 84.525170 iter 90 value 84.524585 iter 100 value 84.306989 final value 84.306989 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 127.635840 iter 10 value 94.489786 iter 20 value 94.324064 iter 30 value 87.086427 iter 40 value 84.662292 iter 50 value 83.564115 iter 60 value 83.556154 iter 70 value 83.555340 iter 80 value 83.552078 iter 90 value 82.338097 iter 100 value 80.615413 final value 80.615413 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 96.136369 iter 10 value 93.819376 iter 20 value 93.815287 iter 30 value 93.665957 iter 40 value 85.193928 iter 50 value 84.749748 iter 60 value 84.689866 iter 70 value 84.494396 final value 84.493740 converged Fitting Repeat 1 # weights: 507 initial value 106.327649 iter 10 value 91.764591 iter 20 value 84.314716 iter 30 value 84.242525 iter 40 value 84.240870 iter 50 value 84.239224 iter 60 value 84.228249 iter 70 value 84.148927 iter 80 value 83.387088 iter 90 value 83.001355 iter 100 value 82.998617 final value 82.998617 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.374387 iter 10 value 94.492624 iter 20 value 94.441925 iter 30 value 88.048888 iter 40 value 87.860249 iter 50 value 86.872480 iter 60 value 86.826395 final value 86.826389 converged Fitting Repeat 3 # weights: 507 initial value 122.041234 iter 10 value 91.008523 iter 20 value 90.854254 iter 30 value 90.757839 final value 90.737372 converged Fitting Repeat 4 # weights: 507 initial value 113.779034 iter 10 value 94.283481 iter 20 value 93.573103 iter 30 value 83.447322 iter 40 value 82.869608 iter 50 value 80.523262 iter 60 value 79.661065 iter 70 value 79.375420 iter 80 value 79.237163 iter 90 value 78.936652 iter 100 value 78.701283 final value 78.701283 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 96.622241 iter 10 value 94.283503 iter 20 value 93.934709 iter 30 value 85.819913 iter 40 value 81.704237 iter 50 value 80.738381 iter 60 value 80.076122 iter 70 value 78.485437 iter 80 value 78.283043 iter 90 value 77.986238 iter 100 value 77.856677 final value 77.856677 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 106.450705 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.887143 final value 94.443243 converged Fitting Repeat 3 # weights: 103 initial value 96.553614 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 113.107884 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.477697 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 103.012578 final value 94.430233 converged Fitting Repeat 2 # weights: 305 initial value 95.294563 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 100.229761 iter 10 value 93.720836 iter 10 value 93.720836 iter 10 value 93.720836 final value 93.720836 converged Fitting Repeat 4 # weights: 305 initial value 103.445000 final value 94.032968 converged Fitting Repeat 5 # weights: 305 initial value 95.939457 iter 10 value 94.174634 iter 20 value 94.165770 final value 94.165746 converged Fitting Repeat 1 # weights: 507 initial value 101.232440 final value 94.443243 converged Fitting Repeat 2 # weights: 507 initial value 105.588753 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 115.610869 final value 94.443243 converged Fitting Repeat 4 # weights: 507 initial value 98.631528 iter 10 value 92.993716 final value 92.929414 converged Fitting Repeat 5 # weights: 507 initial value 123.795341 final value 94.443243 converged Fitting Repeat 1 # weights: 103 initial value 113.637485 iter 10 value 94.454918 iter 20 value 82.556066 iter 30 value 81.680188 iter 40 value 81.377640 iter 50 value 81.178609 iter 60 value 81.082165 iter 70 value 78.286596 iter 80 value 78.043214 final value 78.042086 converged Fitting Repeat 2 # weights: 103 initial value 96.623181 iter 10 value 94.490667 iter 20 value 94.287974 iter 30 value 85.177953 iter 40 value 81.981921 iter 50 value 81.379467 iter 60 value 79.506919 iter 70 value 79.487561 final value 79.487559 converged Fitting Repeat 3 # weights: 103 initial value 108.063682 iter 10 value 94.476780 iter 20 value 87.513065 iter 30 value 82.769055 iter 40 value 82.595550 iter 50 value 81.793055 iter 60 value 78.859659 iter 70 value 78.466368 iter 80 value 78.242629 iter 90 value 78.160551 iter 100 value 78.065151 final value 78.065151 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.750186 iter 10 value 88.047609 iter 20 value 81.310514 iter 30 value 78.562661 iter 40 value 78.242958 iter 50 value 78.166193 iter 60 value 78.047471 iter 70 value 78.045414 final value 78.045342 converged Fitting Repeat 5 # weights: 103 initial value 112.790835 iter 10 value 94.423028 iter 20 value 83.965952 iter 30 value 81.373193 iter 40 value 81.261670 iter 50 value 78.811925 iter 60 value 78.083943 final value 78.042085 converged Fitting Repeat 1 # weights: 305 initial value 102.624160 iter 10 value 94.547700 iter 20 value 94.427989 iter 30 value 92.203394 iter 40 value 85.163226 iter 50 value 82.157499 iter 60 value 80.702142 iter 70 value 79.473827 iter 80 value 76.484949 iter 90 value 75.988750 iter 100 value 75.457663 final value 75.457663 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.144103 iter 10 value 94.523941 iter 20 value 94.302859 iter 30 value 93.938094 iter 40 value 93.842959 iter 50 value 89.430284 iter 60 value 79.956221 iter 70 value 79.083397 iter 80 value 77.021313 iter 90 value 76.327326 iter 100 value 76.149481 final value 76.149481 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 113.428741 iter 10 value 94.442965 iter 20 value 86.497119 iter 30 value 82.297222 iter 40 value 78.856492 iter 50 value 78.039366 iter 60 value 77.515783 iter 70 value 77.283784 iter 80 value 77.027982 iter 90 value 76.847902 iter 100 value 76.777733 final value 76.777733 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.713893 iter 10 value 94.741744 iter 20 value 89.271517 iter 30 value 83.122591 iter 40 value 80.767970 iter 50 value 80.567181 iter 60 value 79.601162 iter 70 value 79.166695 iter 80 value 78.623853 iter 90 value 78.467980 iter 100 value 78.251649 final value 78.251649 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.631753 iter 10 value 94.008481 iter 20 value 82.167111 iter 30 value 79.233531 iter 40 value 78.744029 iter 50 value 77.846901 iter 60 value 76.895820 iter 70 value 76.689676 iter 80 value 76.400381 iter 90 value 76.336768 iter 100 value 76.048101 final value 76.048101 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.089199 iter 10 value 94.591347 iter 20 value 94.364342 iter 30 value 93.382361 iter 40 value 90.818437 iter 50 value 88.823679 iter 60 value 83.522432 iter 70 value 78.327899 iter 80 value 75.819249 iter 90 value 75.466411 iter 100 value 75.132568 final value 75.132568 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 125.363477 iter 10 value 94.750850 iter 20 value 93.909612 iter 30 value 83.368364 iter 40 value 81.826560 iter 50 value 79.384058 iter 60 value 78.232540 iter 70 value 77.884109 iter 80 value 77.077339 iter 90 value 76.524295 iter 100 value 75.692824 final value 75.692824 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.247639 iter 10 value 94.463725 iter 20 value 82.101311 iter 30 value 81.216276 iter 40 value 81.096213 iter 50 value 79.688231 iter 60 value 76.408529 iter 70 value 75.876064 iter 80 value 75.771715 iter 90 value 75.693479 iter 100 value 75.596767 final value 75.596767 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.342023 iter 10 value 97.770723 iter 20 value 89.260883 iter 30 value 87.224214 iter 40 value 79.386477 iter 50 value 76.425142 iter 60 value 76.063099 iter 70 value 75.919332 iter 80 value 75.785636 iter 90 value 75.697217 iter 100 value 75.692697 final value 75.692697 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.801155 iter 10 value 95.092202 iter 20 value 93.525566 iter 30 value 89.738826 iter 40 value 86.233205 iter 50 value 80.821698 iter 60 value 78.899777 iter 70 value 77.367805 iter 80 value 76.763147 iter 90 value 76.217028 iter 100 value 75.898083 final value 75.898083 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.233128 final value 94.485951 converged Fitting Repeat 2 # weights: 103 initial value 99.158789 final value 94.485750 converged Fitting Repeat 3 # weights: 103 initial value 99.630068 final value 94.485976 converged Fitting Repeat 4 # weights: 103 initial value 99.610788 iter 10 value 94.485781 iter 20 value 94.484228 final value 94.484215 converged Fitting Repeat 5 # weights: 103 initial value 100.391416 final value 94.485800 converged Fitting Repeat 1 # weights: 305 initial value 100.349551 iter 10 value 94.488915 iter 20 value 94.328087 iter 30 value 86.359379 iter 40 value 80.460616 iter 50 value 80.446890 iter 60 value 78.286649 iter 70 value 77.025954 iter 80 value 76.856863 iter 90 value 76.803655 iter 100 value 76.165072 final value 76.165072 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.815078 iter 10 value 94.485350 iter 20 value 90.467525 iter 30 value 80.883158 iter 40 value 80.839906 iter 50 value 80.714996 iter 60 value 80.704602 iter 70 value 79.917398 iter 80 value 79.445977 iter 90 value 79.428899 iter 100 value 79.422880 final value 79.422880 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.134618 iter 10 value 94.489811 iter 20 value 94.343323 iter 30 value 92.839218 iter 40 value 89.980276 iter 50 value 89.915597 iter 60 value 89.521382 final value 89.408282 converged Fitting Repeat 4 # weights: 305 initial value 109.633696 iter 10 value 94.489226 iter 20 value 94.471973 iter 30 value 93.753600 iter 40 value 87.911246 iter 50 value 86.491266 iter 60 value 86.353569 final value 86.350653 converged Fitting Repeat 5 # weights: 305 initial value 107.122510 iter 10 value 92.623514 iter 20 value 92.110175 iter 30 value 91.790897 iter 40 value 81.348638 iter 50 value 81.321839 iter 60 value 80.458614 iter 70 value 79.599976 iter 80 value 79.596966 final value 79.596949 converged Fitting Repeat 1 # weights: 507 initial value 95.131504 iter 10 value 94.333591 iter 20 value 94.326149 iter 30 value 84.441458 iter 40 value 84.405582 iter 50 value 84.402948 final value 84.402940 converged Fitting Repeat 2 # weights: 507 initial value 100.379786 iter 10 value 94.491517 iter 20 value 93.814320 iter 30 value 92.109123 iter 40 value 90.587286 final value 90.549188 converged Fitting Repeat 3 # weights: 507 initial value 100.886224 iter 10 value 94.490294 iter 20 value 93.902767 iter 30 value 85.826433 iter 40 value 81.338138 iter 50 value 79.732015 iter 60 value 79.315853 iter 70 value 79.256464 iter 80 value 79.212381 iter 90 value 79.210811 iter 100 value 79.207650 final value 79.207650 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 100.686392 iter 10 value 94.491571 iter 20 value 92.280697 iter 30 value 83.552158 iter 40 value 82.812258 iter 50 value 78.049120 iter 60 value 76.986863 iter 70 value 76.519048 iter 80 value 75.902774 final value 75.887373 converged Fitting Repeat 5 # weights: 507 initial value 102.772987 iter 10 value 90.426002 iter 20 value 89.739994 iter 30 value 89.159564 iter 40 value 89.105808 iter 50 value 88.664842 iter 60 value 88.647521 iter 70 value 88.646093 iter 80 value 88.639312 iter 90 value 80.836331 iter 100 value 77.799961 final value 77.799961 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.133040 final value 94.052909 converged Fitting Repeat 2 # weights: 103 initial value 99.594748 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.360700 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 99.471404 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 96.087986 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 117.018243 final value 94.032967 converged Fitting Repeat 2 # weights: 305 initial value 104.928745 final value 93.714286 converged Fitting Repeat 3 # weights: 305 initial value 96.597832 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 95.913302 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 121.443090 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 110.283940 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 95.751330 iter 10 value 93.538438 final value 93.538420 converged Fitting Repeat 3 # weights: 507 initial value 95.461324 iter 10 value 93.994407 iter 20 value 93.991529 final value 93.991526 converged Fitting Repeat 4 # weights: 507 initial value 115.070541 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 101.218559 final value 94.032967 converged Fitting Repeat 1 # weights: 103 initial value 115.735087 iter 10 value 93.973434 iter 20 value 88.557569 iter 30 value 86.678604 iter 40 value 85.493959 iter 50 value 85.121095 iter 60 value 83.663312 iter 70 value 83.596375 iter 80 value 83.265378 iter 90 value 83.144384 final value 83.142865 converged Fitting Repeat 2 # weights: 103 initial value 106.749184 iter 10 value 94.060091 iter 20 value 94.054888 iter 30 value 93.704922 iter 40 value 93.219853 iter 50 value 90.227961 iter 60 value 86.886515 iter 70 value 85.383979 iter 80 value 84.990221 iter 90 value 84.795891 final value 84.794175 converged Fitting Repeat 3 # weights: 103 initial value 96.742345 iter 10 value 94.055665 iter 20 value 94.055019 iter 30 value 93.154915 iter 40 value 86.226603 iter 50 value 85.724671 iter 60 value 85.559840 iter 70 value 85.119132 iter 80 value 84.848688 iter 90 value 84.574873 iter 100 value 84.557789 final value 84.557789 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.297506 iter 10 value 93.994609 iter 20 value 93.577034 iter 30 value 87.629125 iter 40 value 87.189976 iter 50 value 87.062009 iter 60 value 85.198890 iter 70 value 85.006284 iter 80 value 84.978468 final value 84.978361 converged Fitting Repeat 5 # weights: 103 initial value 97.463388 iter 10 value 93.973039 iter 20 value 93.733812 iter 30 value 93.687822 iter 40 value 89.756332 iter 50 value 85.849268 iter 60 value 85.160830 iter 70 value 84.749112 iter 80 value 84.550551 iter 90 value 83.891609 iter 100 value 83.718915 final value 83.718915 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 104.845337 iter 10 value 94.036360 iter 20 value 93.729005 iter 30 value 93.292718 iter 40 value 87.864346 iter 50 value 87.292297 iter 60 value 87.108960 iter 70 value 86.292777 iter 80 value 85.560416 iter 90 value 84.885450 iter 100 value 84.769113 final value 84.769113 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 122.340315 iter 10 value 94.206308 iter 20 value 85.856781 iter 30 value 85.353143 iter 40 value 84.997029 iter 50 value 84.569310 iter 60 value 83.050898 iter 70 value 82.439559 iter 80 value 82.109720 iter 90 value 81.695600 iter 100 value 81.611870 final value 81.611870 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.006577 iter 10 value 95.070989 iter 20 value 86.376339 iter 30 value 85.628845 iter 40 value 85.384114 iter 50 value 85.147152 iter 60 value 84.705968 iter 70 value 84.618758 iter 80 value 84.581462 iter 90 value 84.538218 iter 100 value 84.452618 final value 84.452618 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.143374 iter 10 value 94.087389 iter 20 value 92.695274 iter 30 value 92.473232 iter 40 value 91.884161 iter 50 value 88.271118 iter 60 value 85.402671 iter 70 value 84.803127 iter 80 value 84.185275 iter 90 value 83.980344 iter 100 value 83.726538 final value 83.726538 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.196333 iter 10 value 92.849844 iter 20 value 87.283064 iter 30 value 85.279944 iter 40 value 84.960362 iter 50 value 84.696132 iter 60 value 84.375462 iter 70 value 84.249822 iter 80 value 83.677996 iter 90 value 82.762269 iter 100 value 82.593236 final value 82.593236 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.927408 iter 10 value 95.763601 iter 20 value 94.720298 iter 30 value 91.035474 iter 40 value 87.063970 iter 50 value 86.747867 iter 60 value 85.992460 iter 70 value 83.780317 iter 80 value 82.107829 iter 90 value 81.877885 iter 100 value 81.661745 final value 81.661745 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.906333 iter 10 value 94.407087 iter 20 value 93.237797 iter 30 value 89.149423 iter 40 value 86.550812 iter 50 value 84.851313 iter 60 value 83.297182 iter 70 value 81.739717 iter 80 value 81.350796 iter 90 value 81.103630 iter 100 value 80.948090 final value 80.948090 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 135.274226 iter 10 value 94.434862 iter 20 value 94.071099 iter 30 value 89.395333 iter 40 value 85.402482 iter 50 value 84.944006 iter 60 value 84.760711 iter 70 value 84.656514 iter 80 value 84.653645 iter 90 value 84.601371 iter 100 value 83.161693 final value 83.161693 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.341000 iter 10 value 93.607848 iter 20 value 91.439400 iter 30 value 89.147361 iter 40 value 83.809704 iter 50 value 82.443208 iter 60 value 81.952623 iter 70 value 81.852057 iter 80 value 81.654872 iter 90 value 81.533824 iter 100 value 81.461424 final value 81.461424 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.492082 iter 10 value 94.026267 iter 20 value 91.233827 iter 30 value 88.564203 iter 40 value 84.879493 iter 50 value 84.058464 iter 60 value 83.677442 iter 70 value 82.577738 iter 80 value 82.027875 iter 90 value 81.839692 iter 100 value 81.595847 final value 81.595847 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.488492 final value 94.054551 converged Fitting Repeat 2 # weights: 103 initial value 105.580156 final value 93.658974 converged Fitting Repeat 3 # weights: 103 initial value 100.081323 iter 10 value 94.054644 iter 20 value 94.052927 final value 94.052911 converged Fitting Repeat 4 # weights: 103 initial value 96.257306 final value 94.054491 converged Fitting Repeat 5 # weights: 103 initial value 100.549423 final value 94.054595 converged Fitting Repeat 1 # weights: 305 initial value 102.259667 iter 10 value 84.908883 iter 20 value 83.859892 iter 30 value 83.412157 iter 40 value 83.411137 iter 50 value 83.407510 iter 60 value 83.258116 iter 70 value 83.165055 final value 83.163916 converged Fitting Repeat 2 # weights: 305 initial value 115.522864 iter 10 value 94.057712 iter 20 value 94.053634 iter 30 value 93.991856 iter 40 value 93.077876 final value 93.069581 converged Fitting Repeat 3 # weights: 305 initial value 101.741309 iter 10 value 94.010738 iter 20 value 94.004945 iter 30 value 94.002192 iter 40 value 92.528094 final value 92.418313 converged Fitting Repeat 4 # weights: 305 initial value 101.825438 iter 10 value 94.028506 iter 20 value 94.024252 iter 30 value 93.780006 iter 40 value 93.749851 iter 50 value 93.749659 iter 60 value 93.657834 iter 70 value 93.651514 final value 93.651150 converged Fitting Repeat 5 # weights: 305 initial value 115.179691 iter 10 value 94.057635 iter 20 value 93.971105 iter 30 value 88.903570 iter 40 value 84.279500 iter 50 value 84.103475 iter 60 value 83.851252 iter 70 value 83.743271 final value 83.743165 converged Fitting Repeat 1 # weights: 507 initial value 95.822651 iter 10 value 93.913194 iter 20 value 92.414204 iter 30 value 84.296822 iter 40 value 83.646595 iter 50 value 83.621055 iter 60 value 81.686151 iter 70 value 80.965535 iter 80 value 80.041273 iter 90 value 79.934312 iter 100 value 79.921002 final value 79.921002 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.924369 iter 10 value 94.040788 iter 20 value 94.034108 iter 30 value 93.732159 iter 40 value 93.217235 iter 50 value 93.216689 iter 60 value 92.903019 iter 70 value 84.338903 iter 80 value 84.003261 iter 90 value 83.625755 iter 100 value 83.615534 final value 83.615534 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.122941 iter 10 value 93.621482 iter 20 value 93.617916 iter 30 value 93.607880 iter 40 value 93.272674 iter 50 value 91.557723 iter 60 value 91.003463 iter 70 value 90.402961 iter 80 value 90.400358 iter 90 value 90.399348 iter 100 value 90.398297 final value 90.398297 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.639232 iter 10 value 93.996573 iter 20 value 93.994707 iter 30 value 93.987136 iter 40 value 93.827301 iter 50 value 92.089920 iter 60 value 91.749529 iter 70 value 91.682636 iter 80 value 91.682442 iter 80 value 91.682441 iter 80 value 91.682441 final value 91.682441 converged Fitting Repeat 5 # weights: 507 initial value 104.927894 iter 10 value 94.101491 iter 20 value 94.059998 iter 30 value 94.040909 iter 40 value 94.038906 iter 50 value 94.037167 iter 60 value 94.035632 iter 70 value 93.615959 iter 80 value 92.916741 iter 90 value 91.456693 iter 100 value 85.147952 final value 85.147952 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 122.389158 iter 10 value 117.968506 iter 20 value 117.958735 iter 30 value 117.890366 final value 117.890332 converged Fitting Repeat 2 # weights: 305 initial value 125.656936 iter 10 value 117.894638 iter 20 value 117.877308 iter 30 value 116.670149 iter 40 value 108.194894 iter 50 value 105.161858 iter 60 value 102.990174 iter 70 value 102.116158 iter 80 value 100.272855 iter 90 value 100.071035 iter 100 value 99.990322 final value 99.990322 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 120.418478 iter 10 value 117.763986 iter 20 value 117.376956 final value 117.208275 converged Fitting Repeat 4 # weights: 305 initial value 119.982260 iter 10 value 117.763480 iter 20 value 117.758336 iter 30 value 109.635027 iter 40 value 104.926843 iter 50 value 104.132265 iter 60 value 104.024313 iter 70 value 104.019931 iter 80 value 104.003827 iter 90 value 103.442676 iter 100 value 100.552095 final value 100.552095 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 120.631816 iter 10 value 116.871963 iter 20 value 116.805304 iter 30 value 116.804821 iter 40 value 116.800540 iter 50 value 115.963050 final value 115.957511 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Sun Jun 9 21:01:03 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 41.364 1.897 42.527
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 33.184 | 1.798 | 35.098 | |
FreqInteractors | 0.201 | 0.012 | 0.214 | |
calculateAAC | 0.042 | 0.008 | 0.050 | |
calculateAutocor | 0.604 | 0.078 | 0.691 | |
calculateCTDC | 0.080 | 0.005 | 0.086 | |
calculateCTDD | 0.571 | 0.022 | 0.595 | |
calculateCTDT | 0.210 | 0.008 | 0.218 | |
calculateCTriad | 0.342 | 0.036 | 0.379 | |
calculateDC | 0.098 | 0.012 | 0.112 | |
calculateF | 0.335 | 0.011 | 0.347 | |
calculateKSAAP | 0.108 | 0.011 | 0.120 | |
calculateQD_Sm | 1.396 | 0.140 | 1.539 | |
calculateTC | 1.506 | 0.154 | 1.662 | |
calculateTC_Sm | 0.313 | 0.041 | 0.356 | |
corr_plot | 33.195 | 1.680 | 34.986 | |
enrichfindP | 0.449 | 0.061 | 8.823 | |
enrichfind_hp | 0.070 | 0.020 | 1.104 | |
enrichplot | 0.323 | 0.009 | 0.334 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.071 | 0.011 | 4.036 | |
getHPI | 0.001 | 0.000 | 0.001 | |
get_negativePPI | 0.002 | 0.000 | 0.002 | |
get_positivePPI | 0.000 | 0.001 | 0.000 | |
impute_missing_data | 0.002 | 0.000 | 0.002 | |
plotPPI | 0.080 | 0.003 | 0.084 | |
pred_ensembel | 13.744 | 0.506 | 10.159 | |
var_imp | 34.745 | 1.808 | 36.762 | |