Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-11-05 12:04 -0500 (Tue, 05 Nov 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
teran2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4503 |
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4763 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" | 4506 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4539 |
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4493 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| teran2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ||||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz |
StartedAt: 2024-11-05 01:19:10 -0500 (Tue, 05 Nov 2024) |
EndedAt: 2024-11-05 01:39:30 -0500 (Tue, 05 Nov 2024) |
EllapsedTime: 1219.9 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.1 (2024-06-14) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 GNU Fortran (Ubuntu 13.2.0-23ubuntu4) 13.2.0 * running under: Ubuntu 24.04.1 LTS * using session charset: UTF-8 * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ...Warning: unable to access index for repository https://CRAN.R-project.org/src/contrib: cannot open URL 'https://CRAN.R-project.org/src/contrib/PACKAGES' OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Unknown package ‘ftrCOOL’ in Rd xrefs * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 33.299 0.362 33.662 FSmethod 32.845 0.641 33.487 corr_plot 32.215 0.190 32.407 pred_ensembel 13.559 0.304 10.408 enrichfindP 0.589 0.030 8.787 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.20-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14) -- "Race for Your Life" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 101.208721 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.378740 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.231343 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 107.752261 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.057741 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.581434 iter 10 value 94.062288 final value 94.062249 converged Fitting Repeat 2 # weights: 305 initial value 100.083501 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 99.685144 final value 94.466823 converged Fitting Repeat 4 # weights: 305 initial value 96.247211 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 100.269077 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 99.872546 final value 94.466823 converged Fitting Repeat 2 # weights: 507 initial value 97.424771 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 102.354424 iter 10 value 89.900148 iter 20 value 85.424705 iter 30 value 85.424428 final value 85.424426 converged Fitting Repeat 4 # weights: 507 initial value 104.056099 iter 10 value 94.443207 final value 94.443183 converged Fitting Repeat 5 # weights: 507 initial value 125.665031 final value 94.466823 converged Fitting Repeat 1 # weights: 103 initial value 103.635352 iter 10 value 94.358095 iter 20 value 92.335383 iter 30 value 92.070401 iter 40 value 91.799490 final value 91.784980 converged Fitting Repeat 2 # weights: 103 initial value 100.306489 iter 10 value 94.237841 iter 20 value 91.956176 iter 30 value 85.959411 iter 40 value 84.271890 iter 50 value 83.988170 iter 60 value 83.138586 iter 70 value 82.736341 final value 82.729630 converged Fitting Repeat 3 # weights: 103 initial value 97.087029 iter 10 value 94.506233 iter 20 value 90.700031 iter 30 value 85.995591 iter 40 value 84.870687 iter 50 value 83.948011 iter 60 value 83.802000 iter 70 value 83.799248 iter 80 value 83.795800 final value 83.795799 converged Fitting Repeat 4 # weights: 103 initial value 108.020472 iter 10 value 94.486938 iter 20 value 88.169019 iter 30 value 87.145356 iter 40 value 85.753264 iter 50 value 85.656502 iter 60 value 84.511977 iter 70 value 84.192087 final value 84.169219 converged Fitting Repeat 5 # weights: 103 initial value 109.797836 iter 10 value 94.337260 iter 20 value 88.729632 iter 30 value 85.429224 iter 40 value 84.662767 iter 50 value 84.206445 iter 60 value 83.947080 iter 70 value 83.795922 final value 83.795799 converged Fitting Repeat 1 # weights: 305 initial value 103.835189 iter 10 value 93.286334 iter 20 value 87.972789 iter 30 value 86.544735 iter 40 value 86.398827 iter 50 value 83.960610 iter 60 value 82.398819 iter 70 value 81.494716 iter 80 value 81.194326 iter 90 value 81.144073 iter 100 value 81.134257 final value 81.134257 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.865669 iter 10 value 94.493330 iter 20 value 87.082575 iter 30 value 86.890705 iter 40 value 85.953915 iter 50 value 84.897627 iter 60 value 84.355004 iter 70 value 84.171262 iter 80 value 82.943947 iter 90 value 82.499384 iter 100 value 82.359224 final value 82.359224 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.098397 iter 10 value 94.866478 iter 20 value 91.820999 iter 30 value 87.373884 iter 40 value 85.962032 iter 50 value 84.745018 iter 60 value 84.311891 iter 70 value 83.796340 iter 80 value 83.716444 iter 90 value 83.703691 iter 100 value 83.457192 final value 83.457192 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 134.687134 iter 10 value 94.257741 iter 20 value 86.855012 iter 30 value 85.137534 iter 40 value 84.599485 iter 50 value 83.720620 iter 60 value 82.660432 iter 70 value 82.285733 iter 80 value 81.665705 iter 90 value 81.392618 iter 100 value 81.158751 final value 81.158751 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.387662 iter 10 value 94.411032 iter 20 value 91.998870 iter 30 value 88.117772 iter 40 value 87.159396 iter 50 value 86.086417 iter 60 value 82.478321 iter 70 value 81.714680 iter 80 value 81.287770 iter 90 value 81.163754 iter 100 value 81.092619 final value 81.092619 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.926118 iter 10 value 95.991097 iter 20 value 90.772670 iter 30 value 85.023324 iter 40 value 84.552321 iter 50 value 83.774660 iter 60 value 81.884852 iter 70 value 81.234403 iter 80 value 81.042492 iter 90 value 80.959441 iter 100 value 80.772771 final value 80.772771 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.863452 iter 10 value 94.326920 iter 20 value 91.423517 iter 30 value 86.598421 iter 40 value 84.996285 iter 50 value 83.724850 iter 60 value 82.978564 iter 70 value 82.622165 iter 80 value 82.114419 iter 90 value 81.699405 iter 100 value 81.278659 final value 81.278659 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.333766 iter 10 value 96.570330 iter 20 value 92.269257 iter 30 value 90.262779 iter 40 value 87.689973 iter 50 value 84.807140 iter 60 value 83.870637 iter 70 value 83.697318 iter 80 value 82.820797 iter 90 value 82.464384 iter 100 value 81.950950 final value 81.950950 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 126.230185 iter 10 value 94.356469 iter 20 value 90.259765 iter 30 value 86.073059 iter 40 value 84.474095 iter 50 value 83.639958 iter 60 value 82.253249 iter 70 value 81.946535 iter 80 value 81.533306 iter 90 value 81.146696 iter 100 value 81.051180 final value 81.051180 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.003022 iter 10 value 94.384041 iter 20 value 87.876570 iter 30 value 86.446852 iter 40 value 85.871824 iter 50 value 84.758997 iter 60 value 83.107872 iter 70 value 82.693135 iter 80 value 82.339640 iter 90 value 82.176378 iter 100 value 81.606468 final value 81.606468 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.582885 final value 94.485772 converged Fitting Repeat 2 # weights: 103 initial value 99.182523 final value 94.485696 converged Fitting Repeat 3 # weights: 103 initial value 97.726421 final value 94.485500 converged Fitting Repeat 4 # weights: 103 initial value 95.083802 iter 10 value 94.485818 iter 20 value 94.484220 final value 94.484215 converged Fitting Repeat 5 # weights: 103 initial value 101.279648 final value 94.485890 converged Fitting Repeat 1 # weights: 305 initial value 102.445496 iter 10 value 94.489230 iter 20 value 94.484405 iter 30 value 93.697109 iter 40 value 91.205972 final value 91.205871 converged Fitting Repeat 2 # weights: 305 initial value 102.905071 iter 10 value 94.471837 iter 20 value 94.467172 final value 94.467096 converged Fitting Repeat 3 # weights: 305 initial value 104.791432 iter 10 value 94.488896 iter 20 value 94.227914 iter 30 value 92.963478 iter 40 value 92.892502 final value 92.892244 converged Fitting Repeat 4 # weights: 305 initial value 99.026344 iter 10 value 93.787848 iter 20 value 93.752668 iter 30 value 93.748525 iter 40 value 93.141156 iter 50 value 86.465874 iter 60 value 86.234248 iter 70 value 85.336757 iter 80 value 82.860120 iter 90 value 82.455779 iter 100 value 82.331617 final value 82.331617 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.793558 iter 10 value 94.474812 iter 20 value 94.252088 iter 30 value 86.095141 iter 40 value 84.968936 iter 50 value 84.918405 iter 60 value 84.875447 iter 70 value 84.845918 iter 80 value 84.839140 final value 84.837853 converged Fitting Repeat 1 # weights: 507 initial value 111.669881 iter 10 value 94.492817 iter 20 value 94.343077 iter 30 value 85.222794 iter 40 value 84.274557 iter 50 value 84.272952 final value 84.272950 converged Fitting Repeat 2 # weights: 507 initial value 100.100991 iter 10 value 94.490989 iter 20 value 90.038586 iter 30 value 84.757802 iter 40 value 83.057141 iter 50 value 82.687761 iter 60 value 82.669563 iter 70 value 82.407105 iter 80 value 82.254859 iter 90 value 82.246443 iter 100 value 82.246073 final value 82.246073 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.754704 iter 10 value 94.477652 iter 20 value 94.469945 iter 30 value 92.197961 iter 40 value 86.038098 iter 50 value 85.384903 iter 60 value 85.384510 iter 70 value 85.313804 iter 80 value 84.408365 iter 90 value 83.938065 iter 100 value 83.936647 final value 83.936647 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.037117 iter 10 value 92.792411 iter 20 value 92.756388 iter 30 value 91.668256 iter 40 value 91.312846 iter 50 value 91.304800 iter 60 value 91.255692 iter 70 value 91.250139 iter 80 value 91.249488 final value 91.249155 converged Fitting Repeat 5 # weights: 507 initial value 95.138769 iter 10 value 94.474654 iter 20 value 94.467076 iter 30 value 94.187209 iter 40 value 88.159750 iter 50 value 85.467059 iter 60 value 85.037775 iter 70 value 84.645150 final value 84.641071 converged Fitting Repeat 1 # weights: 103 initial value 106.314610 iter 10 value 93.794164 iter 20 value 93.785799 final value 93.785768 converged Fitting Repeat 2 # weights: 103 initial value 94.153177 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 101.095280 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 96.956220 final value 93.836066 converged Fitting Repeat 5 # weights: 103 initial value 94.339734 iter 10 value 83.587750 iter 20 value 78.918380 iter 30 value 78.561974 iter 40 value 78.221093 iter 50 value 78.218237 iter 60 value 78.218183 final value 78.218178 converged Fitting Repeat 1 # weights: 305 initial value 101.970141 iter 10 value 90.072778 iter 20 value 90.003475 final value 90.002876 converged Fitting Repeat 2 # weights: 305 initial value 95.740489 final value 93.836066 converged Fitting Repeat 3 # weights: 305 initial value 101.266668 final value 93.836066 converged Fitting Repeat 4 # weights: 305 initial value 103.074620 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 120.309524 iter 10 value 93.810010 iter 10 value 93.810010 iter 10 value 93.810010 final value 93.810010 converged Fitting Repeat 1 # weights: 507 initial value 97.232198 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 97.402897 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 94.849184 iter 10 value 90.648800 iter 20 value 89.986928 iter 30 value 89.985210 final value 89.985186 converged Fitting Repeat 4 # weights: 507 initial value 107.549369 iter 10 value 91.091175 final value 91.090953 converged Fitting Repeat 5 # weights: 507 initial value 104.123121 final value 93.836066 converged Fitting Repeat 1 # weights: 103 initial value 104.375645 iter 10 value 94.054988 iter 20 value 93.894184 iter 30 value 92.515711 iter 40 value 86.635139 iter 50 value 82.392106 iter 60 value 81.437447 iter 70 value 80.398713 iter 80 value 80.364773 final value 80.361652 converged Fitting Repeat 2 # weights: 103 initial value 97.219810 iter 10 value 94.056807 iter 20 value 93.678207 iter 30 value 85.822297 iter 40 value 82.754322 iter 50 value 80.396631 iter 60 value 79.678670 iter 70 value 79.530782 iter 80 value 79.505592 iter 90 value 79.494184 final value 79.494135 converged Fitting Repeat 3 # weights: 103 initial value 102.382402 iter 10 value 93.998037 iter 20 value 91.483556 iter 30 value 88.367060 iter 40 value 86.591129 iter 50 value 84.560796 iter 60 value 80.887882 iter 70 value 77.482678 iter 80 value 76.772429 iter 90 value 76.092658 iter 100 value 75.748235 final value 75.748235 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.524508 iter 10 value 93.986495 iter 20 value 93.529129 iter 30 value 83.391975 iter 40 value 80.883169 iter 50 value 80.571942 iter 60 value 80.229051 iter 70 value 80.193680 iter 80 value 79.993741 iter 90 value 76.205484 iter 100 value 75.939495 final value 75.939495 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 101.614987 iter 10 value 92.327402 iter 20 value 82.031575 iter 30 value 80.558335 iter 40 value 80.097404 iter 50 value 79.692075 iter 60 value 79.529184 iter 70 value 79.509086 final value 79.508798 converged Fitting Repeat 1 # weights: 305 initial value 103.172902 iter 10 value 94.059854 iter 20 value 93.972999 iter 30 value 84.441959 iter 40 value 76.928776 iter 50 value 76.617798 iter 60 value 76.182677 iter 70 value 76.042626 iter 80 value 75.840488 iter 90 value 75.763361 final value 75.763274 converged Fitting Repeat 2 # weights: 305 initial value 104.519225 iter 10 value 92.212763 iter 20 value 91.958905 iter 30 value 81.846810 iter 40 value 81.478655 iter 50 value 80.740318 iter 60 value 79.723567 iter 70 value 77.426457 iter 80 value 76.576880 iter 90 value 75.527934 iter 100 value 75.266750 final value 75.266750 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.338616 iter 10 value 94.212038 iter 20 value 93.154407 iter 30 value 83.196960 iter 40 value 81.511495 iter 50 value 80.302537 iter 60 value 78.944515 iter 70 value 75.791565 iter 80 value 75.191911 iter 90 value 74.785561 iter 100 value 74.670685 final value 74.670685 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.886392 iter 10 value 86.612701 iter 20 value 79.837152 iter 30 value 79.673062 iter 40 value 77.762530 iter 50 value 76.753371 iter 60 value 76.695049 iter 70 value 76.537516 iter 80 value 76.313902 iter 90 value 76.225438 iter 100 value 76.153764 final value 76.153764 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 114.048774 iter 10 value 93.595586 iter 20 value 88.269279 iter 30 value 82.158843 iter 40 value 78.735308 iter 50 value 77.942803 iter 60 value 76.712042 iter 70 value 76.383988 iter 80 value 75.755905 iter 90 value 75.477363 iter 100 value 74.994026 final value 74.994026 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.234101 iter 10 value 93.054539 iter 20 value 85.089506 iter 30 value 81.054191 iter 40 value 77.997463 iter 50 value 76.339363 iter 60 value 76.099431 iter 70 value 75.792331 iter 80 value 75.758413 iter 90 value 75.754091 iter 100 value 75.705216 final value 75.705216 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 126.426838 iter 10 value 94.817161 iter 20 value 80.213643 iter 30 value 78.673430 iter 40 value 76.802060 iter 50 value 76.703412 iter 60 value 76.375625 iter 70 value 76.174113 iter 80 value 76.154496 iter 90 value 76.145109 iter 100 value 76.020074 final value 76.020074 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.346708 iter 10 value 93.975493 iter 20 value 83.747957 iter 30 value 82.968293 iter 40 value 79.718737 iter 50 value 77.531702 iter 60 value 75.724246 iter 70 value 75.369571 iter 80 value 75.289647 iter 90 value 75.120295 iter 100 value 74.952111 final value 74.952111 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.105183 iter 10 value 92.740241 iter 20 value 83.386436 iter 30 value 83.199415 iter 40 value 82.366316 iter 50 value 79.818265 iter 60 value 78.099618 iter 70 value 75.687504 iter 80 value 74.676236 iter 90 value 74.407851 iter 100 value 73.863936 final value 73.863936 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.564449 iter 10 value 93.898567 iter 20 value 85.883674 iter 30 value 79.502506 iter 40 value 78.646903 iter 50 value 77.558806 iter 60 value 76.761706 iter 70 value 75.413689 iter 80 value 74.969177 iter 90 value 74.776488 iter 100 value 74.302380 final value 74.302380 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.445667 final value 94.054941 converged Fitting Repeat 2 # weights: 103 initial value 102.826599 final value 94.054406 converged Fitting Repeat 3 # weights: 103 initial value 105.730872 final value 94.054518 converged Fitting Repeat 4 # weights: 103 initial value 95.344567 final value 94.054620 converged Fitting Repeat 5 # weights: 103 initial value 97.737672 final value 94.054352 converged Fitting Repeat 1 # weights: 305 initial value 103.929658 iter 10 value 93.807696 iter 20 value 93.802068 iter 30 value 93.797201 iter 40 value 93.796768 iter 50 value 93.796145 iter 60 value 93.795415 iter 70 value 93.790776 iter 80 value 93.783754 iter 90 value 93.780714 iter 100 value 88.659523 final value 88.659523 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.877783 iter 10 value 93.653776 iter 20 value 91.262405 iter 30 value 78.153886 iter 40 value 77.563162 iter 50 value 77.560809 iter 60 value 77.558295 iter 70 value 77.461575 final value 77.448138 converged Fitting Repeat 3 # weights: 305 initial value 107.532814 iter 10 value 94.057904 iter 20 value 94.053463 iter 30 value 92.963213 iter 40 value 91.255708 iter 50 value 91.254481 iter 60 value 89.486221 iter 70 value 82.198511 iter 80 value 80.125852 iter 90 value 80.078109 iter 100 value 80.070189 final value 80.070189 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.193706 iter 10 value 94.056895 iter 20 value 90.069522 iter 30 value 89.279751 final value 89.278296 converged Fitting Repeat 5 # weights: 305 initial value 101.159299 iter 10 value 94.058219 iter 20 value 94.053379 iter 30 value 93.971891 iter 40 value 81.643124 iter 50 value 81.628982 iter 60 value 81.591117 iter 70 value 81.497145 iter 80 value 81.179908 iter 90 value 79.223602 iter 100 value 78.470637 final value 78.470637 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.321323 iter 10 value 93.844139 iter 20 value 93.837509 iter 30 value 89.553909 iter 40 value 84.395144 iter 40 value 84.395143 final value 84.395108 converged Fitting Repeat 2 # weights: 507 initial value 109.128076 iter 10 value 94.062267 iter 20 value 93.747954 iter 30 value 83.368664 iter 40 value 79.702161 iter 50 value 78.880967 iter 60 value 77.808749 iter 70 value 77.801541 iter 80 value 77.798413 iter 90 value 77.785026 iter 100 value 77.783026 final value 77.783026 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 98.901826 iter 10 value 94.061110 iter 20 value 94.001881 iter 30 value 91.592896 iter 40 value 80.424526 iter 50 value 76.572431 iter 60 value 75.786981 iter 70 value 75.761092 final value 75.760434 converged Fitting Repeat 4 # weights: 507 initial value 103.093095 iter 10 value 93.844607 iter 20 value 93.315467 iter 30 value 92.260616 iter 40 value 92.225399 iter 50 value 92.223580 final value 92.223569 converged Fitting Repeat 5 # weights: 507 initial value 109.874662 iter 10 value 89.467950 iter 20 value 87.049893 iter 30 value 86.278434 iter 40 value 86.217257 iter 50 value 86.206862 iter 60 value 86.206067 iter 70 value 82.817951 iter 80 value 82.280290 iter 90 value 82.033065 iter 100 value 82.029075 final value 82.029075 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.066682 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.689972 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.429214 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 102.811202 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 111.033042 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.816125 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 101.925957 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 116.435989 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.101419 iter 10 value 93.553367 iter 20 value 93.552498 final value 93.552493 converged Fitting Repeat 5 # weights: 305 initial value 97.902204 final value 94.313817 converged Fitting Repeat 1 # weights: 507 initial value 105.182673 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 95.211265 iter 10 value 93.986292 final value 93.976244 converged Fitting Repeat 3 # weights: 507 initial value 98.031175 final value 94.381567 converged Fitting Repeat 4 # weights: 507 initial value 97.672723 final value 94.026542 converged Fitting Repeat 5 # weights: 507 initial value 125.337635 iter 10 value 94.026542 iter 10 value 94.026542 iter 10 value 94.026542 final value 94.026542 converged Fitting Repeat 1 # weights: 103 initial value 97.830314 iter 10 value 94.540697 iter 20 value 94.462336 iter 30 value 92.082177 iter 40 value 90.570534 iter 50 value 90.469755 iter 60 value 87.669343 iter 70 value 86.571392 iter 80 value 86.253551 iter 90 value 85.497554 iter 100 value 84.580872 final value 84.580872 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 103.598174 iter 10 value 94.481227 iter 20 value 94.142371 iter 30 value 94.086813 iter 40 value 93.615429 iter 50 value 90.734714 iter 60 value 88.750306 iter 70 value 87.566884 iter 80 value 87.142036 iter 90 value 86.744929 iter 100 value 85.515030 final value 85.515030 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 114.073852 iter 10 value 90.220522 iter 20 value 88.318205 iter 30 value 87.761343 iter 40 value 86.797568 iter 50 value 86.539083 iter 60 value 86.503145 final value 86.503071 converged Fitting Repeat 4 # weights: 103 initial value 108.455201 iter 10 value 93.937507 iter 20 value 90.147374 iter 30 value 88.319703 iter 40 value 87.291177 iter 50 value 86.708454 iter 60 value 85.216105 iter 70 value 84.973782 iter 80 value 84.574985 iter 90 value 84.560251 final value 84.559656 converged Fitting Repeat 5 # weights: 103 initial value 99.619117 iter 10 value 94.488555 iter 20 value 94.293059 iter 30 value 94.123403 iter 40 value 94.078499 iter 50 value 92.284912 iter 60 value 91.470194 iter 70 value 88.806847 iter 80 value 88.419466 iter 90 value 88.031865 iter 100 value 88.013431 final value 88.013431 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 130.072066 iter 10 value 94.596614 iter 20 value 92.311614 iter 30 value 89.672007 iter 40 value 87.967073 iter 50 value 87.469239 iter 60 value 86.049788 iter 70 value 85.073502 iter 80 value 84.567534 iter 90 value 84.213582 iter 100 value 83.754357 final value 83.754357 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.076236 iter 10 value 93.675500 iter 20 value 89.369115 iter 30 value 88.140706 iter 40 value 87.783176 iter 50 value 86.340728 iter 60 value 85.695814 iter 70 value 84.912513 iter 80 value 84.094687 iter 90 value 83.265118 iter 100 value 83.034315 final value 83.034315 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.659086 iter 10 value 94.519665 iter 20 value 94.085924 iter 30 value 93.741287 iter 40 value 88.892013 iter 50 value 86.075102 iter 60 value 84.667422 iter 70 value 84.295178 iter 80 value 83.990442 iter 90 value 83.877032 iter 100 value 83.797423 final value 83.797423 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 111.989808 iter 10 value 94.486636 iter 20 value 92.999639 iter 30 value 89.045176 iter 40 value 88.140221 iter 50 value 86.992485 iter 60 value 85.502033 iter 70 value 84.718598 iter 80 value 83.817595 iter 90 value 83.639889 iter 100 value 83.422908 final value 83.422908 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.573169 iter 10 value 93.493760 iter 20 value 88.597646 iter 30 value 88.112327 iter 40 value 86.664177 iter 50 value 85.422498 iter 60 value 84.849114 iter 70 value 84.402581 iter 80 value 84.224886 iter 90 value 83.943075 iter 100 value 83.244468 final value 83.244468 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 114.572131 iter 10 value 94.355767 iter 20 value 89.881565 iter 30 value 87.789335 iter 40 value 85.055102 iter 50 value 84.156561 iter 60 value 83.828875 iter 70 value 83.629940 iter 80 value 83.306053 iter 90 value 83.122311 iter 100 value 82.974745 final value 82.974745 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 124.677180 iter 10 value 94.495759 iter 20 value 90.522368 iter 30 value 89.732743 iter 40 value 89.025040 iter 50 value 87.082327 iter 60 value 84.979304 iter 70 value 83.842863 iter 80 value 83.340907 iter 90 value 83.176295 iter 100 value 82.944528 final value 82.944528 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.289338 iter 10 value 94.693918 iter 20 value 94.238189 iter 30 value 93.653336 iter 40 value 92.122318 iter 50 value 90.824786 iter 60 value 86.797834 iter 70 value 84.989081 iter 80 value 84.395792 iter 90 value 84.154035 iter 100 value 83.746891 final value 83.746891 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 118.297287 iter 10 value 98.970774 iter 20 value 94.276383 iter 30 value 90.715499 iter 40 value 88.471937 iter 50 value 86.153491 iter 60 value 85.065133 iter 70 value 84.159191 iter 80 value 83.950285 iter 90 value 83.905886 iter 100 value 83.499502 final value 83.499502 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.577931 iter 10 value 97.174170 iter 20 value 93.735842 iter 30 value 93.486273 iter 40 value 91.759770 iter 50 value 89.508390 iter 60 value 87.623583 iter 70 value 87.062499 iter 80 value 86.783584 iter 90 value 85.567655 iter 100 value 84.857261 final value 84.857261 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.691958 final value 94.485879 converged Fitting Repeat 2 # weights: 103 initial value 97.095882 final value 94.485741 converged Fitting Repeat 3 # weights: 103 initial value 112.213031 final value 94.485767 converged Fitting Repeat 4 # weights: 103 initial value 102.403031 iter 10 value 94.486068 iter 20 value 94.072596 iter 30 value 87.642351 iter 40 value 87.312779 iter 50 value 87.307706 iter 50 value 87.307705 iter 50 value 87.307705 final value 87.307705 converged Fitting Repeat 5 # weights: 103 initial value 96.664769 final value 94.486121 converged Fitting Repeat 1 # weights: 305 initial value 119.630216 iter 10 value 94.032027 iter 20 value 94.028424 iter 30 value 93.954380 iter 40 value 90.453251 iter 50 value 87.341750 iter 60 value 86.352502 iter 70 value 86.347083 iter 80 value 84.878524 final value 84.877247 converged Fitting Repeat 2 # weights: 305 initial value 100.302547 iter 10 value 94.488605 iter 20 value 94.278659 iter 30 value 88.355074 iter 40 value 86.373164 iter 50 value 86.355525 iter 60 value 86.352852 iter 70 value 86.352802 iter 80 value 86.351869 iter 90 value 86.323367 final value 86.321915 converged Fitting Repeat 3 # weights: 305 initial value 95.423058 iter 10 value 94.032105 iter 20 value 93.979094 final value 93.977000 converged Fitting Repeat 4 # weights: 305 initial value 106.673741 iter 10 value 94.489175 iter 20 value 94.484696 iter 30 value 89.454838 final value 87.868248 converged Fitting Repeat 5 # weights: 305 initial value 96.474076 iter 10 value 94.318380 iter 20 value 90.625279 iter 30 value 87.973036 iter 40 value 86.431456 iter 50 value 86.329675 iter 60 value 85.792144 iter 70 value 85.140698 final value 85.080167 converged Fitting Repeat 1 # weights: 507 initial value 110.367297 iter 10 value 94.491794 iter 20 value 94.409254 iter 30 value 94.052624 iter 30 value 94.052624 iter 30 value 94.052624 final value 94.052624 converged Fitting Repeat 2 # weights: 507 initial value 106.749439 iter 10 value 94.749910 iter 20 value 94.349523 iter 30 value 94.263381 iter 40 value 94.033090 iter 50 value 90.225184 iter 60 value 89.142809 iter 70 value 88.924513 iter 80 value 88.886861 iter 90 value 86.601757 iter 100 value 83.980497 final value 83.980497 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.396168 iter 10 value 94.492200 iter 20 value 94.483103 iter 30 value 94.026915 final value 94.026848 converged Fitting Repeat 4 # weights: 507 initial value 101.065125 iter 10 value 94.492256 iter 20 value 94.421315 iter 30 value 90.729819 iter 40 value 88.886150 iter 50 value 88.773900 iter 60 value 88.769981 final value 88.769770 converged Fitting Repeat 5 # weights: 507 initial value 113.678424 iter 10 value 93.409846 iter 20 value 93.129872 iter 30 value 93.124083 iter 40 value 93.123205 iter 50 value 93.041850 iter 60 value 92.978292 final value 92.978066 converged Fitting Repeat 1 # weights: 103 initial value 104.672888 final value 93.900000 converged Fitting Repeat 2 # weights: 103 initial value 98.343281 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 110.307134 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.366622 final value 94.032967 converged Fitting Repeat 5 # weights: 103 initial value 95.022149 final value 94.052911 converged Fitting Repeat 1 # weights: 305 initial value 97.015732 final value 94.032967 converged Fitting Repeat 2 # weights: 305 initial value 94.576172 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 94.828376 final value 94.052873 converged Fitting Repeat 4 # weights: 305 initial value 97.940442 final value 94.032967 converged Fitting Repeat 5 # weights: 305 initial value 102.180648 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 98.045322 final value 93.782638 converged Fitting Repeat 2 # weights: 507 initial value 106.128565 final value 94.032967 converged Fitting Repeat 3 # weights: 507 initial value 96.268273 final value 93.782638 converged Fitting Repeat 4 # weights: 507 initial value 101.395580 iter 10 value 92.591748 iter 20 value 92.205084 iter 30 value 92.204428 final value 92.204422 converged Fitting Repeat 5 # weights: 507 initial value 98.054934 final value 94.032967 converged Fitting Repeat 1 # weights: 103 initial value 96.832863 iter 10 value 94.197836 iter 20 value 93.859650 iter 30 value 87.328955 iter 40 value 85.029614 iter 50 value 84.351314 iter 60 value 84.194863 final value 84.193920 converged Fitting Repeat 2 # weights: 103 initial value 100.486547 iter 10 value 93.661000 iter 20 value 88.790799 iter 30 value 87.202523 iter 40 value 85.651115 iter 50 value 84.966026 iter 60 value 84.419753 iter 70 value 84.200980 iter 80 value 84.194022 iter 90 value 84.193920 iter 90 value 84.193920 iter 90 value 84.193920 final value 84.193920 converged Fitting Repeat 3 # weights: 103 initial value 109.347473 iter 10 value 94.055316 iter 20 value 93.632319 iter 30 value 93.353620 iter 40 value 89.220571 iter 50 value 86.827573 iter 60 value 86.348430 iter 70 value 84.470384 iter 80 value 84.194673 final value 84.193920 converged Fitting Repeat 4 # weights: 103 initial value 101.340621 iter 10 value 94.136017 iter 20 value 94.053974 iter 30 value 93.185650 iter 40 value 88.350749 iter 50 value 86.212695 iter 60 value 84.776394 iter 70 value 82.736052 iter 80 value 80.795283 iter 90 value 80.524963 iter 100 value 80.516913 final value 80.516913 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.654188 iter 10 value 94.002562 iter 20 value 87.282625 iter 30 value 84.124178 iter 40 value 83.847954 iter 50 value 82.150642 iter 60 value 81.530984 iter 70 value 80.768983 iter 80 value 80.521098 final value 80.516839 converged Fitting Repeat 1 # weights: 305 initial value 102.327472 iter 10 value 94.057368 iter 20 value 93.271064 iter 30 value 86.764975 iter 40 value 83.375769 iter 50 value 82.429438 iter 60 value 81.726977 iter 70 value 81.494393 iter 80 value 80.624234 iter 90 value 80.383271 iter 100 value 80.220246 final value 80.220246 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.552282 iter 10 value 94.070328 iter 20 value 93.823699 iter 30 value 93.610479 iter 40 value 88.684805 iter 50 value 86.809570 iter 60 value 83.946361 iter 70 value 81.535403 iter 80 value 81.116558 iter 90 value 80.354123 iter 100 value 79.685618 final value 79.685618 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 115.213214 iter 10 value 93.740827 iter 20 value 90.108578 iter 30 value 82.587371 iter 40 value 82.000197 iter 50 value 81.596202 iter 60 value 81.146634 iter 70 value 80.448972 iter 80 value 79.926266 iter 90 value 79.668826 iter 100 value 79.600110 final value 79.600110 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.335685 iter 10 value 94.081944 iter 20 value 90.085632 iter 30 value 87.408231 iter 40 value 86.388080 iter 50 value 82.561439 iter 60 value 80.436113 iter 70 value 79.853829 iter 80 value 79.720629 iter 90 value 79.407185 iter 100 value 79.373755 final value 79.373755 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.491064 iter 10 value 94.068531 iter 20 value 94.029614 iter 30 value 88.453984 iter 40 value 86.609535 iter 50 value 85.255658 iter 60 value 84.859826 iter 70 value 84.786935 iter 80 value 82.835084 iter 90 value 81.874399 iter 100 value 81.791504 final value 81.791504 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.521951 iter 10 value 93.907230 iter 20 value 86.389471 iter 30 value 84.900791 iter 40 value 84.690861 iter 50 value 83.885241 iter 60 value 83.276507 iter 70 value 83.186281 iter 80 value 82.454668 iter 90 value 80.659151 iter 100 value 80.155003 final value 80.155003 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.757387 iter 10 value 89.015397 iter 20 value 84.734255 iter 30 value 82.399098 iter 40 value 81.238012 iter 50 value 81.004366 iter 60 value 80.647188 iter 70 value 80.223988 iter 80 value 79.976114 iter 90 value 79.649529 iter 100 value 79.555735 final value 79.555735 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 118.063774 iter 10 value 94.758347 iter 20 value 87.822006 iter 30 value 85.243605 iter 40 value 84.730155 iter 50 value 83.858368 iter 60 value 82.991128 iter 70 value 81.679656 iter 80 value 80.464701 iter 90 value 79.604761 iter 100 value 79.234727 final value 79.234727 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.096475 iter 10 value 96.009012 iter 20 value 94.024302 iter 30 value 89.116157 iter 40 value 86.161933 iter 50 value 82.413495 iter 60 value 81.076501 iter 70 value 80.228838 iter 80 value 79.826214 iter 90 value 79.777950 iter 100 value 79.690576 final value 79.690576 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 126.996009 iter 10 value 96.184305 iter 20 value 90.202509 iter 30 value 88.133221 iter 40 value 84.604422 iter 50 value 82.863080 iter 60 value 81.989980 iter 70 value 81.446089 iter 80 value 80.243513 iter 90 value 79.843703 iter 100 value 79.688470 final value 79.688470 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.586017 final value 94.034149 converged Fitting Repeat 2 # weights: 103 initial value 96.415647 final value 94.054699 converged Fitting Repeat 3 # weights: 103 initial value 98.522328 final value 94.054548 converged Fitting Repeat 4 # weights: 103 initial value 101.467294 final value 94.054487 converged Fitting Repeat 5 # weights: 103 initial value 107.798625 final value 94.054464 converged Fitting Repeat 1 # weights: 305 initial value 98.588655 iter 10 value 94.057975 iter 20 value 94.052915 iter 30 value 93.631406 iter 40 value 93.601682 iter 50 value 92.913999 iter 60 value 91.891912 iter 70 value 91.492789 iter 80 value 86.645802 iter 90 value 81.304013 iter 100 value 80.706255 final value 80.706255 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 95.585904 iter 10 value 94.038384 iter 20 value 94.034279 final value 94.033704 converged Fitting Repeat 3 # weights: 305 initial value 99.328890 iter 10 value 92.044070 iter 20 value 92.040708 iter 30 value 92.037083 iter 40 value 91.753060 iter 50 value 89.588136 iter 60 value 81.846997 iter 70 value 81.557641 iter 80 value 81.479653 iter 90 value 81.427900 iter 100 value 81.415249 final value 81.415249 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 96.345589 iter 10 value 94.057613 iter 20 value 94.025581 iter 30 value 89.212474 iter 40 value 89.210500 iter 50 value 89.114996 iter 60 value 87.827572 iter 70 value 86.901093 iter 80 value 86.899823 iter 90 value 86.860964 iter 100 value 86.847345 final value 86.847345 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.764325 iter 10 value 94.057863 iter 20 value 93.098889 iter 30 value 86.281472 iter 40 value 83.073659 iter 50 value 82.638675 final value 82.637289 converged Fitting Repeat 1 # weights: 507 initial value 122.555675 iter 10 value 94.075502 iter 20 value 94.019794 iter 30 value 93.903473 iter 40 value 93.901945 final value 93.900254 converged Fitting Repeat 2 # weights: 507 initial value 96.323371 iter 10 value 94.062247 iter 20 value 94.027015 iter 30 value 91.427686 iter 40 value 90.179916 iter 50 value 90.176729 iter 60 value 87.750031 iter 70 value 81.972064 iter 80 value 81.599830 iter 90 value 81.419395 iter 100 value 81.324201 final value 81.324201 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.747757 iter 10 value 94.060502 iter 20 value 93.843022 iter 30 value 93.624833 iter 40 value 85.964772 iter 50 value 84.348901 iter 60 value 84.314535 final value 84.313098 converged Fitting Repeat 4 # weights: 507 initial value 128.709663 iter 10 value 94.061057 iter 20 value 94.053194 iter 30 value 93.679907 iter 40 value 93.038264 iter 50 value 89.783500 iter 60 value 89.745477 final value 89.745218 converged Fitting Repeat 5 # weights: 507 initial value 117.652050 iter 10 value 94.061370 iter 20 value 94.051418 iter 30 value 92.151921 iter 40 value 91.302142 iter 50 value 91.253534 iter 60 value 90.016144 iter 70 value 84.536063 iter 80 value 84.056824 iter 90 value 83.898317 iter 100 value 81.276405 final value 81.276405 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.934687 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 94.947310 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 94.542165 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.214006 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 108.380571 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.963348 final value 94.484214 converged Fitting Repeat 2 # weights: 305 initial value 102.154561 iter 10 value 86.733813 iter 20 value 85.605402 final value 85.604060 converged Fitting Repeat 3 # weights: 305 initial value 121.988018 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 101.432362 final value 94.443243 converged Fitting Repeat 5 # weights: 305 initial value 106.382312 final value 94.484214 converged Fitting Repeat 1 # weights: 507 initial value 98.103410 final value 94.443243 converged Fitting Repeat 2 # weights: 507 initial value 102.712616 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 96.919698 final value 94.443243 converged Fitting Repeat 4 # weights: 507 initial value 104.168911 iter 10 value 93.206252 iter 20 value 92.539920 iter 30 value 92.393371 iter 40 value 92.202600 final value 92.202562 converged Fitting Repeat 5 # weights: 507 initial value 101.365417 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 99.281586 iter 10 value 93.616445 iter 20 value 89.729816 iter 30 value 86.994130 iter 40 value 86.071140 iter 50 value 85.418735 iter 60 value 85.131702 iter 70 value 85.013406 final value 85.007037 converged Fitting Repeat 2 # weights: 103 initial value 103.779996 iter 10 value 94.502404 iter 20 value 93.565802 iter 30 value 88.700830 iter 40 value 88.341435 iter 50 value 87.678650 iter 60 value 84.786572 iter 70 value 84.724794 iter 80 value 84.713832 iter 90 value 84.663096 final value 84.658073 converged Fitting Repeat 3 # weights: 103 initial value 98.757615 iter 10 value 94.145394 iter 20 value 89.413288 iter 30 value 86.337387 iter 40 value 86.145798 iter 50 value 85.834662 iter 60 value 85.777190 iter 70 value 85.761177 iter 70 value 85.761176 iter 70 value 85.761176 final value 85.761176 converged Fitting Repeat 4 # weights: 103 initial value 98.104271 iter 10 value 93.148133 iter 20 value 88.960578 iter 30 value 85.500897 iter 40 value 85.096589 iter 50 value 85.026197 iter 60 value 85.007039 final value 85.007037 converged Fitting Repeat 5 # weights: 103 initial value 98.275925 iter 10 value 94.487861 iter 20 value 88.723363 iter 30 value 86.352133 iter 40 value 85.843821 iter 50 value 85.603228 iter 60 value 85.083983 iter 70 value 84.624212 iter 80 value 84.275504 iter 90 value 83.509852 iter 100 value 83.329212 final value 83.329212 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 101.923075 iter 10 value 94.487112 iter 20 value 87.788076 iter 30 value 86.413484 iter 40 value 84.616627 iter 50 value 83.745478 iter 60 value 82.957669 iter 70 value 82.868665 iter 80 value 82.667483 iter 90 value 82.371399 iter 100 value 82.270845 final value 82.270845 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.631907 iter 10 value 94.554717 iter 20 value 89.839493 iter 30 value 89.191525 iter 40 value 84.952148 iter 50 value 83.969362 iter 60 value 82.853484 iter 70 value 82.548459 iter 80 value 82.325308 iter 90 value 82.129851 iter 100 value 81.981583 final value 81.981583 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.876378 iter 10 value 95.289784 iter 20 value 88.209596 iter 30 value 85.308102 iter 40 value 84.752517 iter 50 value 83.871171 iter 60 value 83.569430 iter 70 value 83.442771 iter 80 value 83.191475 iter 90 value 82.781606 iter 100 value 82.274568 final value 82.274568 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.762466 iter 10 value 94.457040 iter 20 value 93.905507 iter 30 value 90.538489 iter 40 value 84.670518 iter 50 value 84.291756 iter 60 value 83.875680 iter 70 value 82.877275 iter 80 value 82.673127 iter 90 value 82.565842 iter 100 value 82.551963 final value 82.551963 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.641972 iter 10 value 94.768995 iter 20 value 92.999743 iter 30 value 88.814887 iter 40 value 86.203490 iter 50 value 83.963677 iter 60 value 82.992613 iter 70 value 82.543009 iter 80 value 82.077062 iter 90 value 81.818609 iter 100 value 81.711042 final value 81.711042 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 120.864386 iter 10 value 94.650158 iter 20 value 94.117892 iter 30 value 92.814014 iter 40 value 90.690074 iter 50 value 90.046357 iter 60 value 88.611731 iter 70 value 84.773463 iter 80 value 84.056050 iter 90 value 83.797593 iter 100 value 83.185217 final value 83.185217 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 127.496571 iter 10 value 94.116290 iter 20 value 87.133309 iter 30 value 86.194440 iter 40 value 84.570741 iter 50 value 83.081786 iter 60 value 82.859006 iter 70 value 82.374552 iter 80 value 82.059224 iter 90 value 81.941281 iter 100 value 81.798285 final value 81.798285 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 115.591122 iter 10 value 94.741128 iter 20 value 88.128524 iter 30 value 86.123702 iter 40 value 85.233806 iter 50 value 84.775306 iter 60 value 84.235062 iter 70 value 83.176930 iter 80 value 82.786038 iter 90 value 82.464384 iter 100 value 82.019666 final value 82.019666 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.570090 iter 10 value 95.224122 iter 20 value 92.846679 iter 30 value 89.107025 iter 40 value 87.345679 iter 50 value 85.833301 iter 60 value 85.418912 iter 70 value 85.063932 iter 80 value 84.800906 iter 90 value 82.645577 iter 100 value 82.294257 final value 82.294257 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.573511 iter 10 value 94.631923 iter 20 value 94.407192 iter 30 value 90.015788 iter 40 value 84.910675 iter 50 value 84.207928 iter 60 value 83.207334 iter 70 value 82.702014 iter 80 value 81.982435 iter 90 value 81.708532 iter 100 value 81.662208 final value 81.662208 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.954869 final value 94.215830 converged Fitting Repeat 2 # weights: 103 initial value 94.962053 final value 94.485959 converged Fitting Repeat 3 # weights: 103 initial value 110.167590 final value 94.486005 converged Fitting Repeat 4 # weights: 103 initial value 94.959202 iter 10 value 88.557556 iter 20 value 88.270721 iter 30 value 88.201775 final value 88.201611 converged Fitting Repeat 5 # weights: 103 initial value 94.563794 final value 94.485905 converged Fitting Repeat 1 # weights: 305 initial value 101.105165 iter 10 value 94.488951 iter 20 value 94.484353 final value 94.484220 converged Fitting Repeat 2 # weights: 305 initial value 101.062147 iter 10 value 94.488520 iter 20 value 94.349938 iter 30 value 88.391900 iter 40 value 88.382234 final value 88.382084 converged Fitting Repeat 3 # weights: 305 initial value 112.213135 iter 10 value 94.489170 iter 20 value 94.312718 iter 30 value 87.460552 iter 40 value 85.868879 iter 50 value 84.770587 iter 60 value 84.754894 iter 70 value 84.099049 iter 80 value 84.004666 iter 90 value 83.990352 iter 100 value 83.500043 final value 83.500043 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 96.741708 iter 10 value 94.489248 iter 20 value 92.777017 iter 30 value 86.152370 iter 40 value 85.615629 iter 50 value 85.109371 iter 60 value 85.022964 iter 70 value 84.969503 iter 80 value 84.938003 iter 90 value 84.934896 final value 84.934012 converged Fitting Repeat 5 # weights: 305 initial value 106.079378 iter 10 value 93.863528 iter 20 value 92.655548 iter 30 value 92.469435 iter 40 value 92.464977 iter 50 value 92.134192 final value 92.129573 converged Fitting Repeat 1 # weights: 507 initial value 106.351109 iter 10 value 94.451537 iter 20 value 94.446138 iter 30 value 87.487099 iter 40 value 85.250607 iter 50 value 84.851532 iter 60 value 84.633901 iter 70 value 84.629298 iter 80 value 84.580529 iter 90 value 84.574191 final value 84.574137 converged Fitting Repeat 2 # weights: 507 initial value 108.289058 iter 10 value 89.956137 iter 20 value 88.666470 final value 88.646986 converged Fitting Repeat 3 # weights: 507 initial value 95.824444 iter 10 value 94.451203 iter 20 value 94.150908 iter 30 value 87.863404 iter 40 value 85.189775 iter 50 value 85.014998 iter 60 value 85.007867 iter 70 value 85.007500 final value 85.007487 converged Fitting Repeat 4 # weights: 507 initial value 104.408124 iter 10 value 86.246760 iter 20 value 86.154221 iter 30 value 86.151783 iter 40 value 85.731291 iter 50 value 85.262770 iter 60 value 85.262209 iter 70 value 85.260192 iter 80 value 84.663625 iter 90 value 84.267977 iter 100 value 84.261448 final value 84.261448 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 94.810596 iter 10 value 94.488089 iter 20 value 93.322655 iter 30 value 90.297272 iter 40 value 86.886456 iter 50 value 86.331755 iter 60 value 85.939768 iter 70 value 85.905208 final value 85.904745 converged Fitting Repeat 1 # weights: 305 initial value 132.967401 iter 10 value 115.482715 iter 20 value 109.004153 iter 30 value 108.655186 iter 40 value 104.884040 iter 50 value 103.473076 iter 60 value 102.502134 iter 70 value 101.981735 iter 80 value 101.573465 iter 90 value 101.151145 iter 100 value 101.108212 final value 101.108212 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 124.680799 iter 10 value 110.254760 iter 20 value 108.861919 iter 30 value 108.499879 iter 40 value 107.170713 iter 50 value 105.262049 iter 60 value 103.908660 iter 70 value 102.368214 iter 80 value 101.777343 iter 90 value 101.138869 iter 100 value 100.952375 final value 100.952375 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 124.488372 iter 10 value 118.060228 iter 20 value 117.710262 iter 30 value 117.226839 iter 40 value 114.820070 iter 50 value 106.903469 iter 60 value 103.590639 iter 70 value 103.349620 iter 80 value 103.129577 iter 90 value 102.347175 iter 100 value 101.957706 final value 101.957706 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 143.915818 iter 10 value 117.664982 iter 20 value 111.342275 iter 30 value 109.324124 iter 40 value 108.820391 iter 50 value 108.332719 iter 60 value 106.335704 iter 70 value 106.113608 iter 80 value 102.643798 iter 90 value 101.606682 iter 100 value 101.420105 final value 101.420105 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 133.954035 iter 10 value 110.424857 iter 20 value 107.626217 iter 30 value 103.652552 iter 40 value 102.302267 iter 50 value 102.059591 iter 60 value 101.606574 iter 70 value 101.539164 iter 80 value 101.403528 iter 90 value 101.242346 iter 100 value 101.021825 final value 101.021825 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Nov 5 01:30:34 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 41.508 1.584 40.916
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 32.845 | 0.641 | 33.487 | |
FreqInteractors | 0.194 | 0.016 | 0.211 | |
calculateAAC | 0.033 | 0.004 | 0.037 | |
calculateAutocor | 0.294 | 0.013 | 0.307 | |
calculateCTDC | 0.063 | 0.000 | 0.063 | |
calculateCTDD | 0.469 | 0.000 | 0.470 | |
calculateCTDT | 0.177 | 0.000 | 0.177 | |
calculateCTriad | 0.356 | 0.017 | 0.373 | |
calculateDC | 0.08 | 0.00 | 0.08 | |
calculateF | 0.264 | 0.008 | 0.272 | |
calculateKSAAP | 0.087 | 0.001 | 0.087 | |
calculateQD_Sm | 1.486 | 0.024 | 1.510 | |
calculateTC | 1.41 | 0.03 | 1.44 | |
calculateTC_Sm | 0.241 | 0.001 | 0.242 | |
corr_plot | 32.215 | 0.190 | 32.407 | |
enrichfindP | 0.589 | 0.030 | 8.787 | |
enrichfind_hp | 0.096 | 0.003 | 1.025 | |
enrichplot | 0.321 | 0.001 | 0.322 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.458 | 0.005 | 4.448 | |
getHPI | 0.000 | 0.001 | 0.002 | |
get_negativePPI | 0.002 | 0.000 | 0.003 | |
get_positivePPI | 0.000 | 0.001 | 0.001 | |
impute_missing_data | 0.002 | 0.000 | 0.003 | |
plotPPI | 0.084 | 0.000 | 0.084 | |
pred_ensembel | 13.559 | 0.304 | 10.408 | |
var_imp | 33.299 | 0.362 | 33.662 | |