Back to Multiple platform build/check report for BioC 3.20:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2024-11-05 12:07 -0500 (Tue, 05 Nov 2024).

HostnameOSArch (*)R versionInstalled pkgs
teran2Linux (Ubuntu 24.04.1 LTS)x86_644.4.1 (2024-06-14) -- "Race for Your Life" 4503
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.1 (2024-06-14) -- "Race for Your Life" 4763
palomino8Windows Server 2022 Datacenterx644.4.1 (2024-06-14 ucrt) -- "Race for Your Life" 4506
lconwaymacOS 12.7.1 Montereyx86_644.4.1 (2024-06-14) -- "Race for Your Life" 4539
kunpeng2Linux (openEuler 22.03 LTS-SP1)aarch644.4.1 (2024-06-14) -- "Race for Your Life" 4493
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2000/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
SNPRelate 1.40.0  (landing page)
Xiuwen Zheng
Snapshot Date: 2024-11-04 13:40 -0500 (Mon, 04 Nov 2024)
git_url: https://git.bioconductor.org/packages/SNPRelate
git_branch: RELEASE_3_20
git_last_commit: 80684f3
git_last_commit_date: 2024-10-29 09:54:31 -0500 (Tue, 29 Oct 2024)
teran2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 22.03 LTS-SP1) / aarch64  OK    OK    OK  


CHECK results for SNPRelate on lconway

To the developers/maintainers of the SNPRelate package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/SNPRelate.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: SNPRelate
Version: 1.40.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:SNPRelate.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings SNPRelate_1.40.0.tar.gz
StartedAt: 2024-11-05 03:24:35 -0500 (Tue, 05 Nov 2024)
EndedAt: 2024-11-05 03:29:51 -0500 (Tue, 05 Nov 2024)
EllapsedTime: 316.0 seconds
RetCode: 0
Status:   OK  
CheckDir: SNPRelate.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:SNPRelate.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings SNPRelate_1.40.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/SNPRelate.Rcheck’
* using R version 4.4.1 (2024-06-14)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 12.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘SNPRelate/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘SNPRelate’ version ‘1.40.0’
* checking package namespace information ... OK
* checking package dependencies ...Warning: unable to access index for repository https://CRAN.R-project.org/src/contrib:
  cannot open URL 'https://CRAN.R-project.org/src/contrib/PACKAGES'
 OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘SNPRelate’ can be installed ... OK
* used C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
* used C++ compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
* used SDK: ‘MacOSX11.3.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking LazyData ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking line endings in Makefiles ... OK
* checking compilation flags in Makevars ... OK
* checking for GNU extensions in Makefiles ... OK
* checking for portable use of $(BLAS_LIBS) and $(LAPACK_LIBS) ... OK
* checking use of PKG_*FLAGS in Makefiles ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘runTests.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/Users/biocbuild/bbs-3.20-bioc/meat/SNPRelate.Rcheck/00check.log’
for details.


Installation output

SNPRelate.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL SNPRelate
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’
* installing *source* package ‘SNPRelate’ ...
** using staged installation
** libs
using C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
using C++ compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
using SDK: ‘MacOSX11.3.sdk’
clang++ -arch x86_64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/gdsfmt/include' -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2   -c ConvToGDS.cpp -o ConvToGDS.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/gdsfmt/include' -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c R_SNPRelate.c -o R_SNPRelate.o
clang++ -arch x86_64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/gdsfmt/include' -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2   -c SNPRelate.cpp -o SNPRelate.o
clang++ -arch x86_64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/gdsfmt/include' -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2   -c ThreadPool.cpp -o ThreadPool.o
clang++ -arch x86_64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/gdsfmt/include' -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2   -c dGenGWAS.cpp -o dGenGWAS.o
clang++ -arch x86_64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/gdsfmt/include' -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2   -c dVect.cpp -o dVect.o
clang++ -arch x86_64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/gdsfmt/include' -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2   -c genBeta.cpp -o genBeta.o
clang++ -arch x86_64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/gdsfmt/include' -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2   -c genEIGMIX.cpp -o genEIGMIX.o
clang++ -arch x86_64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/gdsfmt/include' -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2   -c genFst.cpp -o genFst.o
clang++ -arch x86_64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/gdsfmt/include' -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2   -c genHWE.cpp -o genHWE.o
clang++ -arch x86_64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/gdsfmt/include' -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2   -c genIBD.cpp -o genIBD.o
clang++ -arch x86_64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/gdsfmt/include' -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2   -c genIBS.cpp -o genIBS.o
clang++ -arch x86_64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/gdsfmt/include' -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2   -c genKING.cpp -o genKING.o
clang++ -arch x86_64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/gdsfmt/include' -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2   -c genLD.cpp -o genLD.o
clang++ -arch x86_64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/gdsfmt/include' -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2   -c genPCA.cpp -o genPCA.o
clang++ -arch x86_64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/gdsfmt/include' -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2   -c genSlideWin.cpp -o genSlideWin.o
clang++ -arch x86_64 -std=gnu++17 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/x86_64/lib -o SNPRelate.so ConvToGDS.o R_SNPRelate.o SNPRelate.o ThreadPool.o dGenGWAS.o dVect.o genBeta.o genEIGMIX.o genFst.o genHWE.o genIBD.o genIBS.o genKING.o genLD.o genPCA.o genSlideWin.o -lpthread -L/Library/Frameworks/R.framework/Resources/lib -lRlapack -L/Library/Frameworks/R.framework/Resources/lib -lRblas -L/opt/gfortran/lib/gcc/x86_64-apple-darwin20.0/12.2.0 -L/opt/gfortran/lib -lgfortran -lquadmath -F/Library/Frameworks/R.framework/.. -framework R -Wl,-framework -Wl,CoreFoundation
installing to /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/00LOCK-SNPRelate/00new/SNPRelate/libs
** R
** data
*** moving datasets to lazyload DB
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (SNPRelate)

Tests output

SNPRelate.Rcheck/tests/runTests.Rout


R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage("SNPRelate")
SNPRelate -- supported by Streaming SIMD Extensions 2 (SSE2)
Genetic Relationship Matrix (GRM, GCTA):
Excluding 8,088 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 1,000
    using 1 thread
GRM Calculation:    the sum of all selected genotypes (0,1,2) = 282597
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:09 2024    (internal increment: 15016)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 1s
Saving to the GDS file:

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:10 2024    Done.
Genetic Relationship Matrix (GRM, GCTA):
Excluding 7,088 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 2,000
    using 1 thread
GRM Calculation:    the sum of all selected genotypes (0,1,2) = 559412
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:10 2024    (internal increment: 15016)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Saving to the GDS file:

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:10 2024    Done.
Genetic Relationship Matrix (GRM, GCTA):
Excluding 5,288 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 3,800
    using 1 thread
GRM Calculation:    the sum of all selected genotypes (0,1,2) = 1066957
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:10 2024    (internal increment: 15016)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 1s
Saving to the GDS file:

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:11 2024    Done.
GRM merging:
    open 'tmp1.gds' (1,000 variants)
    open 'tmp2.gds' (2,000 variants)
    open 'tmp3.gds' (3,800 variants)
Weight: 0.147059, 0.294118, 0.558824
Output: tmp.gds

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Genetic Relationship Matrix (GRM, GCTA):
Excluding 2,288 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 6,800
    using 1 thread
GRM Calculation:    the sum of all selected genotypes (0,1,2) = 1908966
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:11 2024    (internal increment: 15016)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 1s
Tue Nov  5 03:29:12 2024    Done.
Genetic Relationship Matrix (GRM, IndivBeta):
Excluding 8,088 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 1,000
    using 1 thread
GRM Calculation:    the sum of all selected genotypes (0,1,2) = 282597
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:12 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Saving to the GDS file:

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:12 2024    Done.
Genetic Relationship Matrix (GRM, IndivBeta):
Excluding 7,088 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 2,000
    using 1 thread
GRM Calculation:    the sum of all selected genotypes (0,1,2) = 559412
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:12 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Saving to the GDS file:

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:12 2024    Done.
Genetic Relationship Matrix (GRM, IndivBeta):
Excluding 5,288 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 3,800
    using 1 thread
GRM Calculation:    the sum of all selected genotypes (0,1,2) = 1066957
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:12 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Saving to the GDS file:

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 1s
Tue Nov  5 03:29:13 2024    Done.
GRM merging:
    open 'tmp1.gds' (1,000 variants)
    open 'tmp2.gds' (2,000 variants)
    open 'tmp3.gds' (3,800 variants)
Weight: 0.147059, 0.294118, 0.558824
Output: tmp.gds

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Writing ...

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Genetic Relationship Matrix (GRM, IndivBeta):
Excluding 2,288 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 6,800
    using 1 thread
GRM Calculation:    the sum of all selected genotypes (0,1,2) = 1908966
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:13 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:13 2024    Done.
Linkage Disequilibrium (LD) estimation on genotypes:
    # of samples: 279
    # of SNPs: 1,000
    using 1 thread
    method: covariance
LD matrix:    the sum of all selected genotypes (0,1,2) = 283058
Linkage Disequilibrium (LD) estimation on genotypes:
    # of samples: 279
    # of SNPs: 1,000
    using 1 thread
    method: correlation
LD matrix:    the sum of all selected genotypes (0,1,2) = 283058
FUNCTION: SNPGDSFileClass
FUNCTION: SNPRelate-package
Start file conversion from PLINK BED to SNP GDS ...
    BED file: '/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/plinkhapmap.bed.gz'
        SNP-major mode (Sample X SNP), 45.7K
    FAM file: '/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/plinkhapmap.fam.gz'
    BIM file: '/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/plinkhapmap.bim.gz'
Tue Nov  5 03:29:16 2024     (store sample id, snp id, position, and chromosome)
    start writing: 60 samples, 5000 SNPs ...

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:16 2024 	Done.
Optimize the access efficiency ...
Clean up the fragments of GDS file:
    open the file 'HapMap.gds' (98.1K)
    # of fragments: 38
    save to 'HapMap.gds.tmp'
    rename 'HapMap.gds.tmp' (97.8K, reduced: 240B)
    # of fragments: 18
Principal Component Analysis (PCA) on genotypes:
Excluding 203 SNPs on non-autosomes
Excluding 28 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 60
    # of SNPs: 4,769
    using 1 thread
    # of principal components: 32
PCA:    the sum of all selected genotypes (0,1,2) = 124273
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:16 2024    (internal increment: 69836)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:16 2024    Begin (eigenvalues and eigenvectors)
Tue Nov  5 03:29:16 2024    Done.
IBD analysis (PLINK method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
PLINK IBD:    the sum of all selected genotypes (0,1,2) = 2446510
Tue Nov  5 03:29:16 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:16 2024    Done.
Identity-By-State (IBS) analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
IBS:    the sum of all selected genotypes (0,1,2) = 2446510
Tue Nov  5 03:29:17 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:17 2024    Done.
Linkage Disequilibrium (LD) estimation on genotypes:
    # of samples: 279
    # of SNPs: 200
    using 1 thread
    method: composite
LD matrix:    the sum of all selected genotypes (0,1,2) = 55417
FUNCTION: hapmap_geno
FUNCTION: snpgdsAdmixPlot
Eigen-analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
Eigen-analysis:    the sum of all selected genotypes (0,1,2) = 2446510
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:17 2024    (internal increment: 15016)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:17 2024    Begin (eigenvalues and eigenvectors)
Tue Nov  5 03:29:17 2024    Done.
FUNCTION: snpgdsAdmixProp
Eigen-analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
Eigen-analysis:    the sum of all selected genotypes (0,1,2) = 2446510
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:18 2024    (internal increment: 15016)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:18 2024    Begin (eigenvalues and eigenvectors)
Tue Nov  5 03:29:18 2024    Done.
FUNCTION: snpgdsAlleleSwitch
Strand-switching at 50 SNP locus/loci.
Unable to determine switching at 10 SNP locus/loci.
FUNCTION: snpgdsApartSelection
Tue Nov  5 03:29:18 2024	Chromosome 1, # of SNPs: 367
Tue Nov  5 03:29:18 2024	Chromosome 2, # of SNPs: 367
Tue Nov  5 03:29:18 2024	Chromosome 3, # of SNPs: 317
Tue Nov  5 03:29:18 2024	Chromosome 4, # of SNPs: 295
Tue Nov  5 03:29:18 2024	Chromosome 5, # of SNPs: 295
Tue Nov  5 03:29:18 2024	Chromosome 6, # of SNPs: 283
Tue Nov  5 03:29:18 2024	Chromosome 7, # of SNPs: 245
Tue Nov  5 03:29:18 2024	Chromosome 8, # of SNPs: 234
Tue Nov  5 03:29:18 2024	Chromosome 9, # of SNPs: 202
Tue Nov  5 03:29:18 2024	Chromosome 10, # of SNPs: 224
Tue Nov  5 03:29:18 2024	Chromosome 11, # of SNPs: 223
Tue Nov  5 03:29:18 2024	Chromosome 12, # of SNPs: 208
Tue Nov  5 03:29:18 2024	Chromosome 13, # of SNPs: 172
Tue Nov  5 03:29:18 2024	Chromosome 14, # of SNPs: 147
Tue Nov  5 03:29:18 2024	Chromosome 15, # of SNPs: 121
Tue Nov  5 03:29:18 2024	Chromosome 16, # of SNPs: 129
Tue Nov  5 03:29:18 2024	Chromosome 17, # of SNPs: 116
Tue Nov  5 03:29:18 2024	Chromosome 18, # of SNPs: 129
Tue Nov  5 03:29:18 2024	Chromosome 19, # of SNPs: 73
Tue Nov  5 03:29:18 2024	Chromosome 20, # of SNPs: 106
Tue Nov  5 03:29:18 2024	Chromosome 21, # of SNPs: 62
Tue Nov  5 03:29:18 2024	Chromosome 22, # of SNPs: 51
Tue Nov  5 03:29:18 2024	Chromosome 23, # of SNPs: 204
Total # of SNPs selected:4570
FUNCTION: snpgdsBED2GDS
Start file conversion from PLINK BED to SNP GDS ...
    BED file: '/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/plinkhapmap.bed.gz'
        SNP-major mode (Sample X SNP), 45.7K
    FAM file: '/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/plinkhapmap.fam.gz'
    BIM file: '/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/plinkhapmap.bim.gz'
Tue Nov  5 03:29:18 2024     (store sample id, snp id, position, and chromosome)
    start writing: 60 samples, 5000 SNPs ...

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:18 2024 	Done.
Optimize the access efficiency ...
Clean up the fragments of GDS file:
    open the file 'HapMap.gds' (98.1K)
    # of fragments: 38
    save to 'HapMap.gds.tmp'
    rename 'HapMap.gds.tmp' (97.8K, reduced: 240B)
    # of fragments: 18
FUNCTION: snpgdsClose
FUNCTION: snpgdsCombineGeno
Create a GDS genotype file:
The new dataset consists of 10 samples and 3000 SNPs
    write sample.id
    write snp.id
    write snp.rs.id
    write snp.position
    write snp.chromosome
    write snp.allele
SNP genotypes are stored in SNP-major mode (Sample X SNP).
Create a GDS genotype file:
The new dataset consists of 20 samples and 3000 SNPs
    write sample.id
    write snp.id
    write snp.rs.id
    write snp.position
    write snp.chromosome
    write snp.allele
SNP genotypes are stored in SNP-major mode (Sample X SNP).
Merge SNP GDS files:
    open 't1.gds' ...
        10 samples, 3000 SNPs
    open 't2.gds' ...
        20 samples, 3000 SNPs
Concatenating samples (mapping to the first GDS file) ...
    reference: 3000 SNPs (100.0%)
    file 2: 0 allele flips, 0 ambiguous locus/loci
        [no flip]: 3000
    create 'test.gds': 30 samples, 3000 SNPs
    FileFormat = SNP_ARRAY
    writing genotypes ...
Clean up the fragments of GDS file:
    open the file 'test.gds' (46.2K)
    # of fragments: 32
    save to 'test.gds.tmp'
    rename 'test.gds.tmp' (46.0K, reduced: 204B)
    # of fragments: 15
Done.
Create a GDS genotype file:
The new dataset consists of 279 samples and 100 SNPs
    write sample.id
    write snp.id
    write snp.rs.id
    write snp.position
    write snp.chromosome
    write snp.allele
SNP genotypes are stored in SNP-major mode (Sample X SNP).
Create a GDS genotype file:
The new dataset consists of 279 samples and 200 SNPs
    write sample.id
    write snp.id
    write snp.rs.id
    write snp.position
    write snp.chromosome
    write snp.allele
SNP genotypes are stored in SNP-major mode (Sample X SNP).
Merge SNP GDS files:
    open 't1.gds' ...
        279 samples, 100 SNPs
    open 't2.gds' ...
        279 samples, 200 SNPs
Concatenating SNPs ...
    create 'test.gds': 279 samples, 300 SNPs
    FileFormat = SNP_ARRAY
    writing genotypes ...
Clean up the fragments of GDS file:
    open the file 'test.gds' (19.1K)
    # of fragments: 32
    save to 'test.gds.tmp'
    rename 'test.gds.tmp' (18.9K, reduced: 204B)
    # of fragments: 15
Done.
FUNCTION: snpgdsCreateGeno
Principal Component Analysis (PCA) on genotypes:
Excluding 42 SNPs on non-autosomes
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 958
    using 1 thread
    # of principal components: 32
PCA:    the sum of all selected genotypes (0,1,2) = 264760
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:19 2024    (internal increment: 15016)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:19 2024    Begin (eigenvalues and eigenvectors)
Tue Nov  5 03:29:19 2024    Done.
FUNCTION: snpgdsCreateGenoSet
SNP pruning based on LD:
Excluding 365 SNPs on non-autosomes
Excluding 139 SNPs (monomorphic: TRUE, MAF: 0.005, missing rate: 0.05)
    # of samples: 279
    # of SNPs: 8,584
    using 1 thread
    sliding window: 500,000 basepairs, Inf SNPs
    |LD| threshold: 0.2
    method: composite
Chrom 1: |====================|====================|
    74.30%, 532 / 716 (Tue Nov  5 03:29:19 2024)
Chrom 2: |====================|====================|
    72.24%, 536 / 742 (Tue Nov  5 03:29:19 2024)
Chrom 3: |====================|====================|
    73.40%, 447 / 609 (Tue Nov  5 03:29:19 2024)
Chrom 4: |====================|====================|
    72.42%, 407 / 562 (Tue Nov  5 03:29:19 2024)
Chrom 5: |====================|====================|
    75.80%, 429 / 566 (Tue Nov  5 03:29:19 2024)
Chrom 6: |====================|====================|
    73.81%, 417 / 565 (Tue Nov  5 03:29:19 2024)
Chrom 7: |====================|====================|
    75.21%, 355 / 472 (Tue Nov  5 03:29:19 2024)
Chrom 8: |====================|====================|
    69.67%, 340 / 488 (Tue Nov  5 03:29:19 2024)
Chrom 9: |====================|====================|
    76.92%, 320 / 416 (Tue Nov  5 03:29:19 2024)
Chrom 10: |====================|====================|
    73.08%, 353 / 483 (Tue Nov  5 03:29:19 2024)
Chrom 11: |====================|====================|
    76.51%, 342 / 447 (Tue Nov  5 03:29:19 2024)
Chrom 12: |====================|====================|
    74.71%, 319 / 427 (Tue Nov  5 03:29:19 2024)
Chrom 13: |====================|====================|
    76.74%, 264 / 344 (Tue Nov  5 03:29:19 2024)
Chrom 14: |====================|====================|
    76.24%, 215 / 282 (Tue Nov  5 03:29:19 2024)
Chrom 15: |====================|====================|
    75.95%, 199 / 262 (Tue Nov  5 03:29:19 2024)
Chrom 16: |====================|====================|
    70.86%, 197 / 278 (Tue Nov  5 03:29:19 2024)
Chrom 17: |====================|====================|
    76.33%, 158 / 207 (Tue Nov  5 03:29:19 2024)
Chrom 18: |====================|====================|
    73.31%, 195 / 266 (Tue Nov  5 03:29:19 2024)
Chrom 19: |====================|====================|
    82.50%, 99 / 120 (Tue Nov  5 03:29:19 2024)
Chrom 20: |====================|====================|
    70.31%, 161 / 229 (Tue Nov  5 03:29:19 2024)
Chrom 21: |====================|====================|
    75.40%, 95 / 126 (Tue Nov  5 03:29:19 2024)
Chrom 22: |====================|====================|
    75.86%, 88 / 116 (Tue Nov  5 03:29:19 2024)
6,468 markers are selected in total.
Create a GDS genotype file:
The new dataset consists of 279 samples and 6468 SNPs
    write sample.id
    write snp.id
    write snp.rs.id
    write snp.position
    write snp.chromosome
    write snp.allele
SNP genotypes are stored in SNP-major mode (Sample X SNP).
FUNCTION: snpgdsCutTree
Individual dissimilarity analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
Dissimilarity:    the sum of all selected genotypes (0,1,2) = 2446510
Dissimilarity:	Tue Nov  5 03:29:19 2024	0%
Dissimilarity:	Tue Nov  5 03:29:20 2024	100%
Determine groups by permutation (Z threshold: 15, outlier threshold: 5):
Create 3 groups.
Create 4 groups.
FUNCTION: snpgdsDiss
Individual dissimilarity analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
Dissimilarity:    the sum of all selected genotypes (0,1,2) = 2446510
Dissimilarity:	Tue Nov  5 03:29:21 2024	0%
Dissimilarity:	Tue Nov  5 03:29:22 2024	100%
Determine groups by permutation (Z threshold: 15, outlier threshold: 5):
Create 3 groups.
FUNCTION: snpgdsDrawTree
Individual dissimilarity analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
Dissimilarity:    the sum of all selected genotypes (0,1,2) = 2446510
Dissimilarity:	Tue Nov  5 03:29:22 2024	0%
Dissimilarity:	Tue Nov  5 03:29:23 2024	100%
Determine groups by permutation (Z threshold: 15, outlier threshold: 5):
Create 3 groups.
FUNCTION: snpgdsEIGMIX
Eigen-analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
Eigen-analysis:    the sum of all selected genotypes (0,1,2) = 2446510
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:24 2024    (internal increment: 15016)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:24 2024    Begin (eigenvalues and eigenvectors)
Tue Nov  5 03:29:24 2024    Done.
FUNCTION: snpgdsErrMsg
FUNCTION: snpgdsExampleFileName
FUNCTION: snpgdsFst
Fst estimation on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
Method: Weir & Cockerham, 1984
# of Populations: 4
    CEU (92), HCB (47), JPT (47), YRI (93)
Fst estimation on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
Method: Weir & Hill, 2002
# of Populations: 4
    CEU (92), HCB (47), JPT (47), YRI (93)
FUNCTION: snpgdsGDS2BED
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: 0.95)
Converting from GDS to PLINK binary PED:
Working space: 279 samples, 8722 SNPs
Output a BIM file.
Output a BED file ...
		Tue Nov  5 03:29:24 2024	0%
		Tue Nov  5 03:29:24 2024	100%
Done.
FUNCTION: snpgdsGDS2Eigen
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: 0.95)
Converting from GDS to EIGENSOFT:
	save to *.snp: 8722 snps
	save to *.ind: 279 samples
	Output: 	Tue Nov  5 03:29:24 2024	0%
	Output: 	Tue Nov  5 03:29:25 2024	100%
Done.
FUNCTION: snpgdsGDS2PED
Converting from GDS to PLINK PED:
	Output a MAP file DONE.
	Output a PED file ...
		Output: 	Tue Nov  5 03:29:25 2024	0%
		Output: 	Tue Nov  5 03:29:25 2024	100%
FUNCTION: snpgdsGEN2GDS
running snpgdsGEN2GDS ...
FUNCTION: snpgdsGRM
Genetic Relationship Matrix (GRM, GCTA):
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
GRM Calculation:    the sum of all selected genotypes (0,1,2) = 2446510
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:25 2024    (internal increment: 15016)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 1s
Tue Nov  5 03:29:26 2024    Done.
Genetic Relationship Matrix (GRM, GCTA):
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
GRM Calculation:    the sum of all selected genotypes (0,1,2) = 2446510
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:26 2024    (internal increment: 15016)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Saving to the GDS file:

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:26 2024    Done.
FUNCTION: snpgdsGetGeno
Genotype matrix: 1000 SNPs X 279 samples
Genotype matrix: 279 samples X 1000 SNPs
FUNCTION: snpgdsHCluster
Individual dissimilarity analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
Dissimilarity:    the sum of all selected genotypes (0,1,2) = 2446510
Dissimilarity:	Tue Nov  5 03:29:26 2024	0%
Dissimilarity:	Tue Nov  5 03:29:27 2024	100%
Determine groups by permutation (Z threshold: 15, outlier threshold: 5):
Create 3 groups.
FUNCTION: snpgdsHWE
Keeping 716 SNPs according to chromosome 1
Excluding 160 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
FUNCTION: snpgdsIBDKING
IBD analysis (KING method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1,217 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 92
    # of SNPs: 7,506
    using 1 thread
No family is specified, and all individuals are treated as singletons.
Relationship inference in the presence of population stratification.
KING IBD:    the sum of all selected genotypes (0,1,2) = 702139
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:28 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:28 2024    Done.
IBD analysis (KING method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1,217 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 92
    # of SNPs: 7,506
    using 1 thread
No family is specified, and all individuals are treated as singletons.
Relationship inference in the presence of population stratification.
KING IBD:    the sum of all selected genotypes (0,1,2) = 702139
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:28 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:28 2024    Done.
IBD analysis (KING method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1,217 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 92
    # of SNPs: 7,506
    using 1 thread
# of families: 20, and within- and between-family relationship are estimated differently.
Relationship inference in the presence of population stratification.
KING IBD:    the sum of all selected genotypes (0,1,2) = 702139
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:29 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:29 2024    Done.
IBD analysis (KING method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1,217 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 92
    # of SNPs: 7,506
    using 1 thread
Relationship inference in a homogeneous population.
KING IBD:    the sum of all selected genotypes (0,1,2) = 702139
Tue Nov  5 03:29:29 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:29 2024    Done.
IBD analysis (KING method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1,217 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 92
    # of SNPs: 7,506
    using 1 thread
Relationship inference in a homogeneous population.
KING IBD:    the sum of all selected genotypes (0,1,2) = 702139
Tue Nov  5 03:29:29 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:29 2024    Done.
FUNCTION: snpgdsIBDMLE
SNP pruning based on LD:
Excluding 365 SNPs on non-autosomes
Excluding 1,581 SNPs (monomorphic: TRUE, MAF: 0.05, missing rate: 0.05)
    # of samples: 30
    # of SNPs: 7,142
    using 1 thread
    sliding window: 500,000 basepairs, Inf SNPs
    |LD| threshold: 0.2
    method: composite
Chrom 1: |====================|====================|
    54.75%, 392 / 716 (Tue Nov  5 03:29:29 2024)
Chrom 2: |====================|====================|
    54.85%, 407 / 742 (Tue Nov  5 03:29:29 2024)
Chrom 3: |====================|====================|
    55.99%, 341 / 609 (Tue Nov  5 03:29:29 2024)
Chrom 4: |====================|====================|
    56.58%, 318 / 562 (Tue Nov  5 03:29:29 2024)
Chrom 5: |====================|====================|
    56.36%, 319 / 566 (Tue Nov  5 03:29:29 2024)
Chrom 6: |====================|====================|
    53.45%, 302 / 565 (Tue Nov  5 03:29:29 2024)
Chrom 7: |====================|====================|
    55.72%, 263 / 472 (Tue Nov  5 03:29:29 2024)
Chrom 8: |====================|====================|
    50.82%, 248 / 488 (Tue Nov  5 03:29:29 2024)
Chrom 9: |====================|====================|
    54.81%, 228 / 416 (Tue Nov  5 03:29:29 2024)
Chrom 10: |====================|====================|
    49.90%, 241 / 483 (Tue Nov  5 03:29:29 2024)
Chrom 11: |====================|====================|
    54.81%, 245 / 447 (Tue Nov  5 03:29:29 2024)
Chrom 12: |====================|====================|
    54.57%, 233 / 427 (Tue Nov  5 03:29:29 2024)
Chrom 13: |====================|====================|
    53.49%, 184 / 344 (Tue Nov  5 03:29:29 2024)
Chrom 14: |====================|====================|
    56.03%, 158 / 282 (Tue Nov  5 03:29:29 2024)
Chrom 15: |====================|====================|
    54.58%, 143 / 262 (Tue Nov  5 03:29:29 2024)
Chrom 16: |====================|====================|
    54.68%, 152 / 278 (Tue Nov  5 03:29:29 2024)
Chrom 17: |====================|====================|
    55.56%, 115 / 207 (Tue Nov  5 03:29:29 2024)
Chrom 18: |====================|====================|
    55.64%, 148 / 266 (Tue Nov  5 03:29:29 2024)
Chrom 19: |====================|====================|
    66.67%, 80 / 120 (Tue Nov  5 03:29:29 2024)
Chrom 20: |====================|====================|
    53.28%, 122 / 229 (Tue Nov  5 03:29:29 2024)
Chrom 21: |====================|====================|
    50.79%, 64 / 126 (Tue Nov  5 03:29:29 2024)
Chrom 22: |====================|====================|
    51.72%, 60 / 116 (Tue Nov  5 03:29:29 2024)
4,763 markers are selected in total.
Identity-By-Descent analysis (MLE) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 30
    # of SNPs: 250
    using 1 thread
MLE IBD:    the sum of all selected genotypes (0,1,2) = 8025
MLE IBD:	Tue Nov  5 03:29:29 2024	0%
MLE IBD:	Tue Nov  5 03:29:30 2024	100%
Identity-By-Descent analysis (MLE) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 25
    # of SNPs: 250
    using 1 thread
Specifying allele frequencies, mean: 0.536, sd: 0.286
MLE IBD:    the sum of all selected genotypes (0,1,2) = 6690
MLE IBD:	Tue Nov  5 03:29:30 2024	0%
MLE IBD:	Tue Nov  5 03:29:30 2024	100%
FUNCTION: snpgdsIBDMLELogLik
SNP pruning based on LD:
Excluding 365 SNPs on non-autosomes
Excluding 1,581 SNPs (monomorphic: TRUE, MAF: 0.05, missing rate: 0.05)
    # of samples: 30
    # of SNPs: 7,142
    using 1 thread
    sliding window: 500,000 basepairs, Inf SNPs
    |LD| threshold: 0.2
    method: composite
Chrom 1: |====================|====================|
    54.75%, 392 / 716 (Tue Nov  5 03:29:30 2024)
Chrom 2: |====================|====================|
    54.85%, 407 / 742 (Tue Nov  5 03:29:30 2024)
Chrom 3: |====================|====================|
    55.99%, 341 / 609 (Tue Nov  5 03:29:30 2024)
Chrom 4: |====================|====================|
    56.58%, 318 / 562 (Tue Nov  5 03:29:30 2024)
Chrom 5: |====================|====================|
    56.36%, 319 / 566 (Tue Nov  5 03:29:30 2024)
Chrom 6: |====================|====================|
    53.45%, 302 / 565 (Tue Nov  5 03:29:30 2024)
Chrom 7: |====================|====================|
    55.72%, 263 / 472 (Tue Nov  5 03:29:30 2024)
Chrom 8: |====================|====================|
    50.82%, 248 / 488 (Tue Nov  5 03:29:30 2024)
Chrom 9: |====================|====================|
    54.81%, 228 / 416 (Tue Nov  5 03:29:30 2024)
Chrom 10: |====================|====================|
    49.90%, 241 / 483 (Tue Nov  5 03:29:30 2024)
Chrom 11: |====================|====================|
    54.81%, 245 / 447 (Tue Nov  5 03:29:30 2024)
Chrom 12: |====================|====================|
    54.57%, 233 / 427 (Tue Nov  5 03:29:30 2024)
Chrom 13: |====================|====================|
    53.49%, 184 / 344 (Tue Nov  5 03:29:30 2024)
Chrom 14: |====================|====================|
    56.03%, 158 / 282 (Tue Nov  5 03:29:30 2024)
Chrom 15: |====================|====================|
    54.58%, 143 / 262 (Tue Nov  5 03:29:30 2024)
Chrom 16: |====================|====================|
    54.68%, 152 / 278 (Tue Nov  5 03:29:30 2024)
Chrom 17: |====================|====================|
    55.56%, 115 / 207 (Tue Nov  5 03:29:30 2024)
Chrom 18: |====================|====================|
    55.64%, 148 / 266 (Tue Nov  5 03:29:30 2024)
Chrom 19: |====================|====================|
    66.67%, 80 / 120 (Tue Nov  5 03:29:30 2024)
Chrom 20: |====================|====================|
    53.28%, 122 / 229 (Tue Nov  5 03:29:30 2024)
Chrom 21: |====================|====================|
    50.79%, 64 / 126 (Tue Nov  5 03:29:30 2024)
Chrom 22: |====================|====================|
    51.72%, 60 / 116 (Tue Nov  5 03:29:30 2024)
4,763 markers are selected in total.
Identity-By-Descent analysis (MLE) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 30
    # of SNPs: 250
    using 1 thread
MLE IBD:    the sum of all selected genotypes (0,1,2) = 8025
MLE IBD:	Tue Nov  5 03:29:30 2024	0%
MLE IBD:	Tue Nov  5 03:29:30 2024	100%
Identity-By-Descent analysis (MLE) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 25
    # of SNPs: 250
    using 1 thread
Specifying allele frequencies, mean: 0.536, sd: 0.286
MLE IBD:    the sum of all selected genotypes (0,1,2) = 6690
MLE IBD:	Tue Nov  5 03:29:30 2024	0%
MLE IBD:	Tue Nov  5 03:29:30 2024	100%
FUNCTION: snpgdsIBDMoM
IBD analysis (PLINK method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1,217 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 92
    # of SNPs: 7,506
    using 1 thread
PLINK IBD:    the sum of all selected genotypes (0,1,2) = 702139
Tue Nov  5 03:29:30 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:30 2024    Done.
IBD analysis (PLINK method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 563 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 93
    # of SNPs: 8,160
    using 1 thread
PLINK IBD:    the sum of all selected genotypes (0,1,2) = 755648
Tue Nov  5 03:29:30 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:30 2024    Done.
IBD analysis (PLINK method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 563 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 93
    # of SNPs: 8,160
    using 1 thread
Specifying allele frequencies, mean: 0.500, sd: 0.315
*** A correction factor based on allele count is not used, since the allele frequencies are specified.
PLINK IBD:    the sum of all selected genotypes (0,1,2) = 755648
Tue Nov  5 03:29:30 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:30 2024    Done.
IBD analysis (PLINK method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 563 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 25
    # of SNPs: 8,160
    using 1 thread
Specifying allele frequencies, mean: 0.500, sd: 0.315
*** A correction factor based on allele count is not used, since the allele frequencies are specified.
PLINK IBD:    the sum of all selected genotypes (0,1,2) = 203285
Tue Nov  5 03:29:31 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:31 2024    Done.
FUNCTION: snpgdsIBDSelection
IBD analysis (PLINK method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 563 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 93
    # of SNPs: 8,160
    using 1 thread
PLINK IBD:    the sum of all selected genotypes (0,1,2) = 755648
Tue Nov  5 03:29:31 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:31 2024    Done.
FUNCTION: snpgdsIBS
Identity-By-State (IBS) analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
IBS:    the sum of all selected genotypes (0,1,2) = 2446510
Tue Nov  5 03:29:31 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:31 2024    Done.
FUNCTION: snpgdsIBSNum
Identity-By-State (IBS) analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
IBS:    the sum of all selected genotypes (0,1,2) = 2446510
Tue Nov  5 03:29:31 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:31 2024    Done.
FUNCTION: snpgdsIndInb
Estimating individual inbreeding coefficients:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
FUNCTION: snpgdsIndInbCoef
FUNCTION: snpgdsIndivBeta
Individual Inbreeding and Relatedness (beta estimator):
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
Individual Beta:    the sum of all selected genotypes (0,1,2) = 2446510
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:31 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:31 2024    Done.
FUNCTION: snpgdsLDMat
Linkage Disequilibrium (LD) estimation on genotypes:
    # of samples: 279
    # of SNPs: 203
    using 1 thread
    method: composite
LD matrix:    the sum of all selected genotypes (0,1,2) = 56582
Linkage Disequilibrium (LD) estimation on genotypes:
    # of samples: 279
    # of SNPs: 203
    using 1 thread
    sliding window size: 203
    method: composite
LD matrix:    the sum of all selected genotypes (0,1,2) = 56582
FUNCTION: snpgdsLDpair
FUNCTION: snpgdsLDpruning
SNP pruning based on LD:
Excluding 365 SNPs on non-autosomes
Excluding 139 SNPs (monomorphic: TRUE, MAF: 0.005, missing rate: 0.05)
    # of samples: 279
    # of SNPs: 8,584
    using 1 thread
    sliding window: 500,000 basepairs, Inf SNPs
    |LD| threshold: 0.2
    method: composite
Chrom 1: |====================|====================|
    74.30%, 532 / 716 (Tue Nov  5 03:29:32 2024)
Chrom 2: |====================|====================|
    72.24%, 536 / 742 (Tue Nov  5 03:29:32 2024)
Chrom 3: |====================|====================|
    73.40%, 447 / 609 (Tue Nov  5 03:29:32 2024)
Chrom 4: |====================|====================|
    72.42%, 407 / 562 (Tue Nov  5 03:29:32 2024)
Chrom 5: |====================|====================|
    75.80%, 429 / 566 (Tue Nov  5 03:29:32 2024)
Chrom 6: |====================|====================|
    73.81%, 417 / 565 (Tue Nov  5 03:29:32 2024)
Chrom 7: |====================|====================|
    75.21%, 355 / 472 (Tue Nov  5 03:29:32 2024)
Chrom 8: |====================|====================|
    69.67%, 340 / 488 (Tue Nov  5 03:29:32 2024)
Chrom 9: |====================|====================|
    76.92%, 320 / 416 (Tue Nov  5 03:29:32 2024)
Chrom 10: |====================|====================|
    73.08%, 353 / 483 (Tue Nov  5 03:29:32 2024)
Chrom 11: |====================|====================|
    76.51%, 342 / 447 (Tue Nov  5 03:29:32 2024)
Chrom 12: |====================|====================|
    74.71%, 319 / 427 (Tue Nov  5 03:29:32 2024)
Chrom 13: |====================|====================|
    76.74%, 264 / 344 (Tue Nov  5 03:29:32 2024)
Chrom 14: |====================|====================|
    76.24%, 215 / 282 (Tue Nov  5 03:29:32 2024)
Chrom 15: |====================|====================|
    75.95%, 199 / 262 (Tue Nov  5 03:29:32 2024)
Chrom 16: |====================|====================|
    70.86%, 197 / 278 (Tue Nov  5 03:29:32 2024)
Chrom 17: |====================|====================|
    76.33%, 158 / 207 (Tue Nov  5 03:29:32 2024)
Chrom 18: |====================|====================|
    73.31%, 195 / 266 (Tue Nov  5 03:29:32 2024)
Chrom 19: |====================|====================|
    82.50%, 99 / 120 (Tue Nov  5 03:29:32 2024)
Chrom 20: |====================|====================|
    70.31%, 161 / 229 (Tue Nov  5 03:29:32 2024)
Chrom 21: |====================|====================|
    75.40%, 95 / 126 (Tue Nov  5 03:29:32 2024)
Chrom 22: |====================|====================|
    75.86%, 88 / 116 (Tue Nov  5 03:29:32 2024)
6,468 markers are selected in total.
List of 22
 $ chr1 : int [1:532] 1 2 4 5 7 10 12 14 15 16 ...
 $ chr2 : int [1:536] 717 718 719 720 721 723 724 725 726 727 ...
 $ chr3 : int [1:447] 1459 1461 1464 1466 1468 1469 1471 1472 1473 1476 ...
 $ chr4 : int [1:407] 2068 2069 2070 2071 2072 2074 2075 2076 2077 2078 ...
 $ chr5 : int [1:429] 2630 2631 2635 2636 2637 2638 2640 2642 2643 2645 ...
 $ chr6 : int [1:417] 3196 3197 3198 3200 3201 3204 3205 3206 3207 3208 ...
 $ chr7 : int [1:355] 3761 3762 3763 3766 3767 3768 3770 3771 3772 3773 ...
 $ chr8 : int [1:340] 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 ...
 $ chr9 : int [1:320] 4721 4722 4724 4727 4728 4730 4731 4732 4733 4735 ...
 $ chr10: int [1:353] 5138 5139 5140 5143 5144 5145 5146 5147 5148 5149 ...
 $ chr11: int [1:342] 5620 5623 5624 5625 5626 5628 5629 5630 5631 5632 ...
 $ chr12: int [1:319] 6067 6068 6069 6070 6073 6074 6075 6077 6078 6079 ...
 $ chr13: int [1:264] 6494 6497 6498 6499 6500 6501 6503 6505 6507 6509 ...
 $ chr14: int [1:215] 6840 6841 6842 6843 6844 6845 6846 6847 6848 6850 ...
 $ chr15: int [1:199] 7120 7121 7122 7124 7125 7126 7127 7128 7129 7130 ...
 $ chr16: int [1:197] 7382 7383 7384 7385 7387 7388 7389 7391 7392 7394 ...
 $ chr17: int [1:158] 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 ...
 $ chr18: int [1:195] 7867 7868 7869 7870 7871 7872 7873 7874 7875 7877 ...
 $ chr19: int [1:99] 8133 8135 8136 8137 8138 8139 8140 8141 8142 8144 ...
 $ chr20: int [1:161] 8253 8254 8257 8258 8259 8260 8261 8262 8265 8266 ...
 $ chr21: int [1:95] 8482 8484 8485 8486 8487 8488 8489 8490 8491 8492 ...
 $ chr22: int [1:88] 8608 8609 8610 8612 8613 8614 8615 8617 8618 8620 ...
FUNCTION: snpgdsMergeGRM
Genetic Relationship Matrix (GRM, GCTA):
Excluding 2,288 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 6,800
    using 1 thread
GRM Calculation:    the sum of all selected genotypes (0,1,2) = 1908966
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:32 2024    (internal increment: 15016)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:32 2024    Done.
Genetic Relationship Matrix (GRM, GCTA):
Excluding 5,688 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 3,400
    using 1 thread
GRM Calculation:    the sum of all selected genotypes (0,1,2) = 951558
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:32 2024    (internal increment: 15016)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Saving to the GDS file:

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:32 2024    Done.
Genetic Relationship Matrix (GRM, GCTA):
Excluding 5,688 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 3,400
    using 1 thread
GRM Calculation:    the sum of all selected genotypes (0,1,2) = 957408
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:33 2024    (internal increment: 15016)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Saving to the GDS file:

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:33 2024    Done.
GRM merging:
    open 'tmp1.gds' (3,400 variants)
    open 'tmp2.gds' (3,400 variants)
Weight: 0.5, 0.5
Output: tmp.gds

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
GRM merging:
    open 'tmp1.gds' (3,400 variants)
    open 'tmp2.gds' (3,400 variants)
Weight: 0.5, 0.5

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
FUNCTION: snpgdsOpen
FUNCTION: snpgdsOption
FUNCTION: snpgdsPCA
Principal Component Analysis (PCA) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
    # of principal components: 32
PCA:    the sum of all selected genotypes (0,1,2) = 2446510
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:33 2024    (internal increment: 15016)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 1s
Tue Nov  5 03:29:34 2024    Begin (eigenvalues and eigenvectors)
Tue Nov  5 03:29:34 2024    Done.
FUNCTION: snpgdsPCACorr
Principal Component Analysis (PCA) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
    # of principal components: 32
PCA:    the sum of all selected genotypes (0,1,2) = 2446510
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:34 2024    (internal increment: 15016)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:34 2024    Begin (eigenvalues and eigenvectors)
Tue Nov  5 03:29:34 2024    Done.
SNP Correlation:
    # of samples: 279
    # of SNPs: 9,088
    using 1 thread
Correlation:    the sum of all selected genotypes (0,1,2) = 2553065
Tue Nov  5 03:29:34 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:34 2024    Done.
SNP Correlation:
    # of samples: 279
    # of SNPs: 9,088
    using 1 thread
Creating 'test.gds' ...
Correlation:    the sum of all selected genotypes (0,1,2) = 2553065
Tue Nov  5 03:29:34 2024

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:34 2024    Done.
FUNCTION: snpgdsPCASNPLoading
Principal Component Analysis (PCA) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
    # of principal components: 8
PCA:    the sum of all selected genotypes (0,1,2) = 2446510
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:34 2024    (internal increment: 15016)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 1s
Tue Nov  5 03:29:35 2024    Begin (eigenvalues and eigenvectors)
Tue Nov  5 03:29:35 2024    Done.
SNP Loading:
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
    using the top 8 eigenvectors
SNP Loading:    the sum of all selected genotypes (0,1,2) = 2446510
Tue Nov  5 03:29:35 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:35 2024    Done.
FUNCTION: snpgdsPCASampLoading
Principal Component Analysis (PCA) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
    # of principal components: 8
PCA:    the sum of all selected genotypes (0,1,2) = 2446510
CPU capabilities: Double-Precision SSE2
Tue Nov  5 03:29:35 2024    (internal increment: 15016)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:35 2024    Begin (eigenvalues and eigenvectors)
Tue Nov  5 03:29:35 2024    Done.
SNP Loading:
    # of samples: 279
    # of SNPs: 8,722
    using 1 thread
    using the top 8 eigenvectors
SNP Loading:    the sum of all selected genotypes (0,1,2) = 2446510
Tue Nov  5 03:29:35 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:35 2024    Done.
Sample Loading:
    # of samples: 100
    # of SNPs: 8,722
    using 1 thread
    using the top 8 eigenvectors
Sample Loading:    the sum of all selected genotypes (0,1,2) = 878146
Tue Nov  5 03:29:35 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:35 2024    Done.
FUNCTION: snpgdsPED2GDS
Converting from GDS to PLINK PED:
	Output a MAP file DONE.
	Output a PED file ...
		Output: 	Tue Nov  5 03:29:35 2024	0%
		Output: 	Tue Nov  5 03:29:36 2024	100%
PLINK PED/MAP to GDS Format:
Import 9088 variants from 'tmp.map'
Chromosome:
  1  10  11  12  13  14  15  16  17  18  19   2  20  21  22   3   4   5   6   7 
716 483 447 427 344 282 262 278 207 266 120 742 229 126 116 609 562 566 565 472 
  8   9   X 
488 416 365 
Reading 'tmp.ped'
Output: 'test.gds'
Import 279 samples
Transpose the genotypic matrix ...
Done.
Optimize the access efficiency ...
Clean up the fragments of GDS file:
    open the file 'test.gds' (1.3M)
    # of fragments: 50
    save to 'test.gds.tmp'
    rename 'test.gds.tmp' (711.4K, reduced: 618.7K)
    # of fragments: 26
FUNCTION: snpgdsPairIBD
SNP pruning based on LD:
Excluding 365 SNPs on non-autosomes
Excluding 1,646 SNPs (monomorphic: TRUE, MAF: 0.05, missing rate: 0.05)
    # of samples: 93
    # of SNPs: 7,077
    using 1 thread
    sliding window: 500,000 basepairs, Inf SNPs
    |LD| threshold: 0.2
    method: composite
Chrom 1: |====================|====================|
    62.29%, 446 / 716 (Tue Nov  5 03:29:36 2024)
Chrom 2: |====================|====================|
    62.26%, 462 / 742 (Tue Nov  5 03:29:36 2024)
Chrom 3: |====================|====================|
    60.10%, 366 / 609 (Tue Nov  5 03:29:36 2024)
Chrom 4: |====================|====================|
    64.41%, 362 / 562 (Tue Nov  5 03:29:36 2024)
Chrom 5: |====================|====================|
    62.90%, 356 / 566 (Tue Nov  5 03:29:36 2024)
Chrom 6: |====================|====================|
    60.18%, 340 / 565 (Tue Nov  5 03:29:36 2024)
Chrom 7: |====================|====================|
    63.14%, 298 / 472 (Tue Nov  5 03:29:36 2024)
Chrom 8: |====================|====================|
    57.58%, 281 / 488 (Tue Nov  5 03:29:36 2024)
Chrom 9: |====================|====================|
    62.98%, 262 / 416 (Tue Nov  5 03:29:36 2024)
Chrom 10: |====================|====================|
    60.46%, 292 / 483 (Tue Nov  5 03:29:36 2024)
Chrom 11: |====================|====================|
    63.09%, 282 / 447 (Tue Nov  5 03:29:36 2024)
Chrom 12: |====================|====================|
    62.76%, 268 / 427 (Tue Nov  5 03:29:36 2024)
Chrom 13: |====================|====================|
    63.08%, 217 / 344 (Tue Nov  5 03:29:36 2024)
Chrom 14: |====================|====================|
    63.83%, 180 / 282 (Tue Nov  5 03:29:36 2024)
Chrom 15: |====================|====================|
    63.74%, 167 / 262 (Tue Nov  5 03:29:36 2024)
Chrom 16: |====================|====================|
    62.23%, 173 / 278 (Tue Nov  5 03:29:36 2024)
Chrom 17: |====================|====================|
    65.70%, 136 / 207 (Tue Nov  5 03:29:36 2024)
Chrom 18: |====================|====================|
    59.40%, 158 / 266 (Tue Nov  5 03:29:36 2024)
Chrom 19: |====================|====================|
    68.33%, 82 / 120 (Tue Nov  5 03:29:36 2024)
Chrom 20: |====================|====================|
    66.38%, 152 / 229 (Tue Nov  5 03:29:36 2024)
Chrom 21: |====================|====================|
    61.11%, 77 / 126 (Tue Nov  5 03:29:36 2024)
Chrom 22: |====================|====================|
    57.76%, 67 / 116 (Tue Nov  5 03:29:36 2024)
5,424 markers are selected in total.
Identity-By-Descent analysis (MLE) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 25
    # of SNPs: 250
    using 1 thread
Specifying allele frequencies, mean: 0.508, sd: 0.281
MLE IBD:    the sum of all selected genotypes (0,1,2) = 6317
MLE IBD:	Tue Nov  5 03:29:36 2024	0%
MLE IBD:	Tue Nov  5 03:29:37 2024	100%
IBD analysis (PLINK method of moment) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 25
    # of SNPs: 250
    using 1 thread
Specifying allele frequencies, mean: 0.508, sd: 0.281
*** A correction factor based on allele count is not used, since the allele frequencies are specified.
PLINK IBD:    the sum of all selected genotypes (0,1,2) = 6317
Tue Nov  5 03:29:37 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:37 2024    Done.
Identity-By-Descent analysis (MLE) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 25
    # of SNPs: 250
    using 1 thread
Specifying allele frequencies, mean: 0.508, sd: 0.281
MLE IBD:    the sum of all selected genotypes (0,1,2) = 6317
MLE IBD:	Tue Nov  5 03:29:37 2024	0%
MLE IBD:	Tue Nov  5 03:29:37 2024	100%
Genotype matrix: 250 SNPs X 25 samples
[1] -384.5064
[1] -379.8635
[1] -389.2882
[1] -390.0637
[1] -405.3267
[1] -386.6771
[1] -382.3052
[1] -375.7884
[1] -400.5859
[1] -379.9675
[1] -372.4947
[1] -372.3346
[1] -393.543
[1] -387.7755
[1] -373.858
[1] -380.4349
[1] -389.0108
[1] -402.2013
[1] -393.1451
[1] -388.5999
[1] -383.8134
[1] -376.6837
[1] -385.4354
[1] -378.9947
FUNCTION: snpgdsPairIBDMLELogLik
SNP pruning based on LD:
Excluding 365 SNPs on non-autosomes
Excluding 1,646 SNPs (monomorphic: TRUE, MAF: 0.05, missing rate: 0.05)
    # of samples: 93
    # of SNPs: 7,077
    using 1 thread
    sliding window: 500,000 basepairs, Inf SNPs
    |LD| threshold: 0.2
    method: composite
Chrom 1: |====================|====================|
    62.29%, 446 / 716 (Tue Nov  5 03:29:37 2024)
Chrom 2: |====================|====================|
    62.26%, 462 / 742 (Tue Nov  5 03:29:37 2024)
Chrom 3: |====================|====================|
    60.10%, 366 / 609 (Tue Nov  5 03:29:37 2024)
Chrom 4: |====================|====================|
    64.41%, 362 / 562 (Tue Nov  5 03:29:37 2024)
Chrom 5: |====================|====================|
    62.90%, 356 / 566 (Tue Nov  5 03:29:37 2024)
Chrom 6: |====================|====================|
    60.18%, 340 / 565 (Tue Nov  5 03:29:37 2024)
Chrom 7: |====================|====================|
    63.14%, 298 / 472 (Tue Nov  5 03:29:37 2024)
Chrom 8: |====================|====================|
    57.58%, 281 / 488 (Tue Nov  5 03:29:37 2024)
Chrom 9: |====================|====================|
    62.98%, 262 / 416 (Tue Nov  5 03:29:37 2024)
Chrom 10: |====================|====================|
    60.46%, 292 / 483 (Tue Nov  5 03:29:37 2024)
Chrom 11: |====================|====================|
    63.09%, 282 / 447 (Tue Nov  5 03:29:37 2024)
Chrom 12: |====================|====================|
    62.76%, 268 / 427 (Tue Nov  5 03:29:37 2024)
Chrom 13: |====================|====================|
    63.08%, 217 / 344 (Tue Nov  5 03:29:37 2024)
Chrom 14: |====================|====================|
    63.83%, 180 / 282 (Tue Nov  5 03:29:37 2024)
Chrom 15: |====================|====================|
    63.74%, 167 / 262 (Tue Nov  5 03:29:37 2024)
Chrom 16: |====================|====================|
    62.23%, 173 / 278 (Tue Nov  5 03:29:37 2024)
Chrom 17: |====================|====================|
    65.70%, 136 / 207 (Tue Nov  5 03:29:37 2024)
Chrom 18: |====================|====================|
    59.40%, 158 / 266 (Tue Nov  5 03:29:37 2024)
Chrom 19: |====================|====================|
    68.33%, 82 / 120 (Tue Nov  5 03:29:37 2024)
Chrom 20: |====================|====================|
    66.38%, 152 / 229 (Tue Nov  5 03:29:37 2024)
Chrom 21: |====================|====================|
    61.11%, 77 / 126 (Tue Nov  5 03:29:37 2024)
Chrom 22: |====================|====================|
    57.76%, 67 / 116 (Tue Nov  5 03:29:37 2024)
5,424 markers are selected in total.
Identity-By-Descent analysis (MLE) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 25
    # of SNPs: 250
    using 1 thread
Specifying allele frequencies, mean: 0.508, sd: 0.281
MLE IBD:    the sum of all selected genotypes (0,1,2) = 6317
MLE IBD:	Tue Nov  5 03:29:37 2024	0%
MLE IBD:	Tue Nov  5 03:29:37 2024	100%
IBD analysis (PLINK method of moment) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 25
    # of SNPs: 250
    using 1 thread
Specifying allele frequencies, mean: 0.508, sd: 0.281
*** A correction factor based on allele count is not used, since the allele frequencies are specified.
PLINK IBD:    the sum of all selected genotypes (0,1,2) = 6317
Tue Nov  5 03:29:37 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:37 2024    Done.
Genotype matrix: 250 SNPs X 25 samples
[1] -384.5064
[1] -379.8635
[1] -389.2882
[1] -390.0637
[1] -405.3267
[1] -386.6771
[1] -382.3052
[1] -375.7884
[1] -400.5859
[1] -379.9675
[1] -372.4947
[1] -372.3346
[1] -393.543
[1] -387.7755
[1] -373.858
[1] -380.4349
[1] -389.0108
[1] -402.2013
[1] -393.1451
[1] -388.5999
[1] -383.8134
[1] -376.6837
[1] -385.4354
[1] -378.9947
FUNCTION: snpgdsPairScore
Excluding 365 SNPs on non-autosomes
Pair Score Calculation:
    # of samples: 120
    # of SNPs: 8,723
Method: IBS
Genotype Score:    the sum of all selected genotypes (0,1,2) = 1050236
List of 3
 $ sample.id: chr [1:120] "NA19139" "NA19160" "NA07034" "NA12814" ...
 $ snp.id   : int [1:8723] 1 2 3 4 5 6 7 8 9 10 ...
 $ score    :'data.frame':	60 obs. of  5 variables:
  ..$ Avg    : num [1:60] 1.72 1.73 1.71 1.72 1.73 ...
  ..$ SD     : num [1:60] 0.452 0.443 0.457 0.45 0.443 ...
  ..$ Num    : int [1:60] 8684 8627 8669 8637 8682 8634 8654 8678 8680 8679 ...
  ..$ Sample1: chr [1:60] "NA19139" "NA10847" "NA18515" "NA19129" ...
  ..$ Sample2: chr [1:60] "NA19138" "NA12146" "NA18516" "NA19128" ...
Pair Score Calculation:
    # of samples: 120
    # of SNPs: 8,723
Method: IBS
Genotype Score:    the sum of all selected genotypes (0,1,2) = 1050236
List of 3
 $ sample.id: chr [1:120] "NA19139" "NA19160" "NA07034" "NA12814" ...
 $ snp.id   : int [1:8723] 1 2 3 4 5 6 7 8 9 10 ...
 $ score    :'data.frame':	60 obs. of  5 variables:
  ..$ Avg    : num [1:60] 0.999 1 1 1 1 ...
  ..$ SD     : num [1:60] 0.024 0 0.0186 0.0215 0.0215 ...
  ..$ Num    : int [1:60] 8684 8627 8669 8637 8682 8634 8654 8678 8680 8679 ...
  ..$ Sample1: chr [1:60] "NA19139" "NA10847" "NA18515" "NA19129" ...
  ..$ Sample2: chr [1:60] "NA19138" "NA12146" "NA18516" "NA19128" ...
Pair Score Calculation:
    # of samples: 120
    # of SNPs: 8,723
Method: IBS
Genotype Score:    the sum of all selected genotypes (0,1,2) = 1050236
List of 3
 $ sample.id: chr [1:120] "NA19139" "NA19160" "NA07034" "NA12814" ...
 $ snp.id   : int [1:8723] 1 2 3 4 5 6 7 8 9 10 ...
 $ score    : num [1:3, 1:8723] 1.75 0.437 60 1.583 0.497 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:3] "Avg" "SD" "Num"
  .. ..$ : NULL
Pair Score Calculation:
    # of samples: 120
    # of SNPs: 8,723
Method: IBS
Genotype Score:    the sum of all selected genotypes (0,1,2) = 1050236
List of 3
 $ sample.id: chr [1:120] "NA19139" "NA19160" "NA07034" "NA12814" ...
 $ snp.id   : int [1:8723] 1 2 3 4 5 6 7 8 9 10 ...
 $ score    : int [1:60, 1:8723] 1 1 2 2 2 2 2 1 2 2 ...
Pair Score Calculation:
    # of samples: 120
    # of SNPs: 8,723
Method: IBS
Output: /Users/biocbuild/bbs-3.20-bioc/meat/SNPRelate.Rcheck/tests/tmp.gds
Genotype Score:    the sum of all selected genotypes (0,1,2) = 1050236
FUNCTION: snpgdsSNPList
FUNCTION: snpgdsSNPListClass
FUNCTION: snpgdsSNPListIntersect
FUNCTION: snpgdsSNPRateFreq
FUNCTION: snpgdsSampMissRate
FUNCTION: snpgdsSelectSNP
Excluding 365 SNPs on non-autosomes
Excluding 1,221 SNPs (monomorphic: TRUE, MAF: 0.05, missing rate: 0.95)
FUNCTION: snpgdsSlidingWindow
Sliding Window Analysis:
Excluding 8 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
    # of samples: 279
    # of SNPs: 9,080
    using 1 thread
    window size: 500000, shift: 100000 (basepair)
Chromosome Set: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23
Tue Nov  5 03:29:38 2024, Chromosome 1 (716 SNPs), 2448 windows
Tue Nov  5 03:29:38 2024, Chromosome 2 (742 SNPs), 2416 windows
Tue Nov  5 03:29:38 2024, Chromosome 3 (609 SNPs), 1985 windows
Tue Nov  5 03:29:38 2024, Chromosome 4 (562 SNPs), 1894 windows
Tue Nov  5 03:29:38 2024, Chromosome 5 (566 SNPs), 1797 windows
Tue Nov  5 03:29:38 2024, Chromosome 6 (565 SNPs), 1694 windows
Tue Nov  5 03:29:38 2024, Chromosome 7 (472 SNPs), 1573 windows
Tue Nov  5 03:29:38 2024, Chromosome 8 (488 SNPs), 1445 windows
Tue Nov  5 03:29:38 2024, Chromosome 9 (416 SNPs), 1393 windows
Tue Nov  5 03:29:38 2024, Chromosome 10 (483 SNPs), 1343 windows
Tue Nov  5 03:29:38 2024, Chromosome 11 (447 SNPs), 1338 windows
Tue Nov  5 03:29:38 2024, Chromosome 12 (427 SNPs), 1316 windows
Tue Nov  5 03:29:38 2024, Chromosome 13 (344 SNPs), 948 windows
Tue Nov  5 03:29:38 2024, Chromosome 14 (281 SNPs), 847 windows
Tue Nov  5 03:29:38 2024, Chromosome 15 (262 SNPs), 774 windows
Tue Nov  5 03:29:38 2024, Chromosome 16 (278 SNPs), 873 windows
Tue Nov  5 03:29:38 2024, Chromosome 17 (207 SNPs), 773 windows
Tue Nov  5 03:29:38 2024, Chromosome 18 (266 SNPs), 753 windows
Tue Nov  5 03:29:38 2024, Chromosome 19 (120 SNPs), 627 windows
Tue Nov  5 03:29:38 2024, Chromosome 20 (229 SNPs), 602 windows
Tue Nov  5 03:29:38 2024, Chromosome 21 (126 SNPs), 311 windows
Tue Nov  5 03:29:38 2024, Chromosome 22 (116 SNPs), 312 windows
Tue Nov  5 03:29:38 2024, Chromosome 23 (358 SNPs), 1507 windows
Tue Nov  5 03:29:38 2024 	Done.
FUNCTION: snpgdsSummary
The file name: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/hapmap_geno.gds 
The total number of samples: 279 
The total number of SNPs: 9088 
SNP genotypes are stored in SNP-major mode (Sample X SNP).
FUNCTION: snpgdsTranspose
The file name: /Users/biocbuild/bbs-3.20-bioc/meat/SNPRelate.Rcheck/tests/test.gds 
The total number of samples: 279 
The total number of SNPs: 9088 
SNP genotypes are stored in SNP-major mode (Sample X SNP).
SNP genotypes: 279 samples, 9088 SNPs
Genotype matrix is being transposed ...
Clean up the fragments of GDS file:
    open the file 'test.gds' (1.3M)
    # of fragments: 28
    save to 'test.gds.tmp'
    rename 'test.gds.tmp' (709.6K, reduced: 619.1K)
    # of fragments: 26
The file name: /Users/biocbuild/bbs-3.20-bioc/meat/SNPRelate.Rcheck/tests/test.gds 
The total number of samples: 279 
The total number of SNPs: 9088 
SNP genotypes are stored in individual-major mode (SNP X Sample).
FUNCTION: snpgdsVCF2GDS
##fileformat=VCFv4.1
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	NA00001	NA00002	NA00003
20	14370	rs6054257	G	A	29	PASS	NS=3;DP=14;AF=0.5;DB;H2	GT:GQ:DP:HQ	0|0:48:1:51,51	1|0:48:8:51,51	1/1:43:5:.,.
20	17330	.	T	A	3	q10	NS=3;DP=11;AF=0.017	GT:GQ:DP:HQ	0|0:49:3:58,50	0|1:3:5:65,3	0/0:41:3
20	1110696	rs6040355	A	G,T	67	PASS	NS=2;DP=10;AF=0.333,0.667;AA=T;DB	GT:GQ:DP:HQ	1|2:21:6:23,27	2|1:2:0:18,2	2/2:35:4
20	1230237	.	T	.	47	PASS	NS=3;DP=13;AA=T	GT:GQ:DP:HQ	0|0:54:7:56,60	0|0:48:4:51,51	0/0:61:2
20	1234567	microsat1	GTC	G,GTCT	50	PASS	NS=3;DP=9;AA=G	GT:GQ:DP	0/1:35:4	0/2:17:2	1/1:40:3
Start file conversion from VCF to SNP GDS ...
Method: extracting biallelic SNPs
Number of samples: 3
Parsing "/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/sequence.vcf" ...
	import 2 variants.
+ genotype   { Bit2 3x2, 2B } *
Optimize the access efficiency ...
Clean up the fragments of GDS file:
    open the file 'test1.gds' (2.9K)
    # of fragments: 46
    save to 'test1.gds.tmp'
    rename 'test1.gds.tmp' (2.6K, reduced: 312B)
    # of fragments: 20
The file name: /Users/biocbuild/bbs-3.20-bioc/meat/SNPRelate.Rcheck/tests/test1.gds 
The total number of samples: 3 
The total number of SNPs: 2 
SNP genotypes are stored in SNP-major mode (Sample X SNP).
Start file conversion from VCF to SNP GDS ...
Method: extracting biallelic SNPs
Number of samples: 3
Parsing "/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/sequence.vcf" ...
	import 2 variants.
+ genotype   { Bit2 3x2, 2B } *
SNP genotypes: 3 samples, 2 SNPs
Genotype matrix is being transposed ...
Optimize the access efficiency ...
Clean up the fragments of GDS file:
    open the file 'test2.gds' (3.0K)
    # of fragments: 48
    save to 'test2.gds.tmp'
    rename 'test2.gds.tmp' (2.6K, reduced: 417B)
    # of fragments: 20
The file name: /Users/biocbuild/bbs-3.20-bioc/meat/SNPRelate.Rcheck/tests/test2.gds 
The total number of samples: 3 
The total number of SNPs: 2 
SNP genotypes are stored in individual-major mode (SNP X Sample).
Start file conversion from VCF to SNP GDS ...
Method: dosage (0,1,2) of reference allele for all variant sites
Number of samples: 3
Parsing "/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/sequence.vcf" ...
	import 5 variants.
+ genotype   { Bit2 3x5, 4B } *
SNP genotypes: 3 samples, 5 SNPs
Genotype matrix is being transposed ...
Optimize the access efficiency ...
Clean up the fragments of GDS file:
    open the file 'test3.gds' (3.1K)
    # of fragments: 48
    save to 'test3.gds.tmp'
    rename 'test3.gds.tmp' (2.7K, reduced: 419B)
    # of fragments: 20
Some of 'snp.allele' are not standard (e.g., A/G,T).
The file name: /Users/biocbuild/bbs-3.20-bioc/meat/SNPRelate.Rcheck/tests/test3.gds 
The total number of samples: 3 
The total number of SNPs: 5 
SNP genotypes are stored in individual-major mode (SNP X Sample).
The number of valid samples: 3 
The number of biallelic unique SNPs: 2 
Start file conversion from VCF to SNP GDS ...
Method: dosage (0,1,2) of reference allele for all variant sites
Number of samples: 3
Parsing "/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/sequence.vcf" ...
	import 5 variants.
+ genotype   { Bit2 3x5, 4B } *
Optimize the access efficiency ...
Clean up the fragments of GDS file:
    open the file 'test4.gds' (3.0K)
    # of fragments: 46
    save to 'test4.gds.tmp'
    rename 'test4.gds.tmp' (2.7K, reduced: 312B)
    # of fragments: 20
Some of 'snp.allele' are not standard (e.g., A/G,T).
The file name: /Users/biocbuild/bbs-3.20-bioc/meat/SNPRelate.Rcheck/tests/test4.gds 
The total number of samples: 3 
The total number of SNPs: 5 
SNP genotypes are stored in SNP-major mode (Sample X SNP).
The number of valid samples: 3 
The number of biallelic unique SNPs: 2 
Start file conversion from VCF to SNP GDS ...
Method: dosage (0,1,2) of reference allele for all variant sites
Number of samples: 3
Parsing "/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/sequence.vcf" ...
	import 5 variants.
+ genotype   { Bit2 3x5, 4B } *
Optimize the access efficiency ...
Clean up the fragments of GDS file:
    open the file 'test5.gds' (3.0K)
    # of fragments: 46
    save to 'test5.gds.tmp'
    rename 'test5.gds.tmp' (2.7K, reduced: 312B)
    # of fragments: 20
Some of 'snp.allele' are not standard (e.g., T/A,G).
The file name: /Users/biocbuild/bbs-3.20-bioc/meat/SNPRelate.Rcheck/tests/test5.gds 
The total number of samples: 3 
The total number of SNPs: 5 
SNP genotypes are stored in SNP-major mode (Sample X SNP).
The number of valid samples: 3 
The number of biallelic unique SNPs: 2 
FUNCTION: snpgdsVCF2GDS_R
##fileformat=VCFv4.1
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	NA00001	NA00002	NA00003
20	14370	rs6054257	G	A	29	PASS	NS=3;DP=14;AF=0.5;DB;H2	GT:GQ:DP:HQ	0|0:48:1:51,51	1|0:48:8:51,51	1/1:43:5:.,.
20	17330	.	T	A	3	q10	NS=3;DP=11;AF=0.017	GT:GQ:DP:HQ	0|0:49:3:58,50	0|1:3:5:65,3	0/0:41:3
20	1110696	rs6040355	A	G,T	67	PASS	NS=2;DP=10;AF=0.333,0.667;AA=T;DB	GT:GQ:DP:HQ	1|2:21:6:23,27	2|1:2:0:18,2	2/2:35:4
20	1230237	.	T	.	47	PASS	NS=3;DP=13;AA=T	GT:GQ:DP:HQ	0|0:54:7:56,60	0|0:48:4:51,51	0/0:61:2
20	1234567	microsat1	GTC	G,GTCT	50	PASS	NS=3;DP=9;AA=G	GT:GQ:DP	0/1:35:4	0/2:17:2	1/1:40:3
Start snpgdsVCF2GDS ...
	Extracting bi-allelic and polymorhpic SNPs.
	Scanning ...
	file: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/sequence.vcf
	content: 5 rows x 12 columns
Tue Nov  5 03:29:39 2024 	store sample id, snp id, position, and chromosome.
	start writing: 3 samples, 2 SNPs ...
	file: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/sequence.vcf
[1] 1
Tue Nov  5 03:29:39 2024 	Done.
The file name: /Users/biocbuild/bbs-3.20-bioc/meat/SNPRelate.Rcheck/tests/test1.gds 
The total number of samples: 3 
The total number of SNPs: 2 
SNP genotypes are stored in SNP-major mode (Sample X SNP).
Start snpgdsVCF2GDS ...
	Extracting bi-allelic and polymorhpic SNPs.
	Scanning ...
	file: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/sequence.vcf
	content: 5 rows x 12 columns
Tue Nov  5 03:29:39 2024 	store sample id, snp id, position, and chromosome.
	start writing: 3 samples, 2 SNPs ...
	file: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/sequence.vcf
[1] 1
Tue Nov  5 03:29:39 2024 	Done.
The file name: /Users/biocbuild/bbs-3.20-bioc/meat/SNPRelate.Rcheck/tests/test2.gds 
The total number of samples: 3 
The total number of SNPs: 2 
SNP genotypes are stored in SNP-major mode (Sample X SNP).
Start snpgdsVCF2GDS ...
	Storing dosage of the reference allele for all variant sites, including bi-allelic SNPs, multi-allelic SNPs, indels and structural variants.
	Scanning ...
	file: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/sequence.vcf
	content: 5 rows x 12 columns
Tue Nov  5 03:29:39 2024 	store sample id, snp id, position, and chromosome.
	start writing: 3 samples, 5 SNPs ...
	file: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/sequence.vcf
Tue Nov  5 03:29:39 2024 	Done.
Some of 'snp.allele' are not standard (e.g., A/G,T).
The file name: /Users/biocbuild/bbs-3.20-bioc/meat/SNPRelate.Rcheck/tests/test3.gds 
The total number of samples: 3 
The total number of SNPs: 5 
SNP genotypes are stored in SNP-major mode (Sample X SNP).
The number of valid samples: 3 
The number of biallelic unique SNPs: 2 
Start snpgdsVCF2GDS ...
	Storing dosage of the reference allele for all variant sites, including bi-allelic SNPs, multi-allelic SNPs, indels and structural variants.
	Scanning ...
	file: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/sequence.vcf
	content: 5 rows x 12 columns
Tue Nov  5 03:29:39 2024 	store sample id, snp id, position, and chromosome.
	start writing: 3 samples, 5 SNPs ...
	file: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/SNPRelate/extdata/sequence.vcf
Tue Nov  5 03:29:39 2024 	Done.
Some of 'snp.allele' are not standard (e.g., A/G,T).
The file name: /Users/biocbuild/bbs-3.20-bioc/meat/SNPRelate.Rcheck/tests/test4.gds 
The total number of samples: 3 
The total number of SNPs: 5 
SNP genotypes are stored in SNP-major mode (Sample X SNP).
The number of valid samples: 3 
The number of biallelic unique SNPs: 2 
SNP Correlation:
    # of samples: 90
    # of SNPs: 9,088
    using 1 thread
Correlation:    the sum of all selected genotypes (0,1,2) = 824424
Tue Nov  5 03:29:40 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:40 2024    Done.
SNP Correlation:
    # of samples: 90
    # of SNPs: 9,088
    using 1 thread
Creating 'test.gds' ...
Correlation:    the sum of all selected genotypes (0,1,2) = 824424
Tue Nov  5 03:29:40 2024

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:40 2024    Done.
SNP Loading:
    # of samples: 90
    # of SNPs: 8,695
    using 1 thread
    using the top 8 eigenvectors
SNP Loading:    the sum of all selected genotypes (0,1,2) = 787449
Tue Nov  5 03:29:40 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:40 2024    Done.
Sample Loading:
    # of samples: 100
    # of SNPs: 8,695
    using 1 thread
    using the top 8 eigenvectors
Sample Loading:    the sum of all selected genotypes (0,1,2) = 875255
Tue Nov  5 03:29:40 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:40 2024    Done.
SNP Correlation:
    # of samples: 90
    # of SNPs: 9,088
    using 2 threads
Correlation:    the sum of all selected genotypes (0,1,2) = 824424
Tue Nov  5 03:29:40 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:40 2024    Done.
SNP Correlation:
    # of samples: 90
    # of SNPs: 9,088
    using 2 threads
Creating 'test.gds' ...
Correlation:    the sum of all selected genotypes (0,1,2) = 824424
Tue Nov  5 03:29:40 2024

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:40 2024    Done.
SNP Loading:
    # of samples: 90
    # of SNPs: 8,695
    using 1 thread
    using the top 8 eigenvectors
SNP Loading:    the sum of all selected genotypes (0,1,2) = 787449
Tue Nov  5 03:29:40 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:40 2024    Done.
Sample Loading:
    # of samples: 100
    # of SNPs: 8,695
    using 1 thread
    using the top 8 eigenvectors
Sample Loading:    the sum of all selected genotypes (0,1,2) = 875255
Tue Nov  5 03:29:40 2024    (internal increment: 65536)

[..................................................]  0%, ETC: ---        
[==================================================] 100%, completed, 0s
Tue Nov  5 03:29:40 2024    Done.


RUNIT TEST PROTOCOL -- Tue Nov  5 03:29:40 2024 
*********************************************** 
Number of test functions: 13 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
SNPRelate RUnit Tests - 13 test functions, 0 errors, 0 failures
Number of test functions: 13 
Number of errors: 0 
Number of failures: 0 
> 
> proc.time()
   user  system elapsed 
 29.737   2.088  31.845 

Example timings

SNPRelate.Rcheck/SNPRelate-Ex.timings

nameusersystemelapsed
SNPGDSFileClass-class0.0280.0040.031
SNPRelate-package0.9600.0871.052
snpgdsAdmixPlot0.5090.0130.524
snpgdsAdmixProp0.4360.0110.448
snpgdsAlleleSwitch0.0730.0060.079
snpgdsApartSelection0.0720.0080.080
snpgdsBED2GDS0.0760.0110.091
snpgdsClose0.0180.0010.019
snpgdsCombineGeno0.0960.0420.148
snpgdsCreateGeno0.4280.0160.446
snpgdsCreateGenoSet0.1630.0250.192
snpgdsCutTree1.7130.0781.797
snpgdsDiss1.4690.0081.479
snpgdsDrawTree1.3630.0081.372
snpgdsEIGMIX0.4660.0120.479
snpgdsErrMsg0.0000.0000.001
snpgdsExampleFileName0.0010.0000.001
snpgdsFst0.0220.0040.025
snpgdsGDS2BED0.0410.0130.055
snpgdsGDS2Eigen0.3620.0470.410
snpgdsGDS2PED0.3090.0440.355
snpgdsGEN2GDS0.0010.0000.000
snpgdsGRM0.9770.0301.011
snpgdsGetGeno0.0540.0150.069
snpgdsHCluster1.4860.0181.508
snpgdsHWE0.0140.0020.017
snpgdsIBDKING1.3620.0461.412
snpgdsIBDMLE0.3570.0130.372
snpgdsIBDMLELogLik0.3860.0160.402
snpgdsIBDMoM0.2260.0220.249
snpgdsIBDSelection0.0830.0070.090
snpgdsIBS0.2150.0070.222
snpgdsIBSNum0.2470.0150.263
snpgdsIndInb0.0200.0020.022
snpgdsIndInbCoef0.0040.0010.005
snpgdsIndivBeta0.1520.0030.155
snpgdsLDMat0.1890.0150.206
snpgdsLDpair0.0020.0010.004
snpgdsLDpruning0.1460.0190.166
snpgdsMergeGRM1.7920.0881.894
snpgdsOpen0.0160.0010.017
snpgdsOption0.0010.0010.002
snpgdsPCA0.5730.0140.590
snpgdsPCACorr0.5750.0330.615
snpgdsPCASNPLoading0.6270.0100.637
snpgdsPCASampLoading0.4520.0060.458
snpgdsPED2GDS0.8660.0630.937
snpgdsPairIBD0.5150.0180.536
snpgdsPairIBDMLELogLik0.2930.0200.315
snpgdsPairScore0.1960.0950.294
snpgdsSNPList0.0060.0020.007
snpgdsSNPListIntersect0.0360.0020.039
snpgdsSNPRateFreq0.1440.0050.151
snpgdsSampMissRate0.0050.0010.005
snpgdsSelectSNP0.0050.0010.006
snpgdsSlidingWindow0.6350.0860.724
snpgdsSummary0.0450.0060.051
snpgdsTranspose0.0800.0090.091
snpgdsVCF2GDS0.2190.2720.507
snpgdsVCF2GDS_R0.1050.1400.256