Back to Multiple platform build/check report for BioC 3.6
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

CHECK report for STATegRa on veracruz1

This page was generated on 2018-04-12 13:39:40 -0400 (Thu, 12 Apr 2018).

Package 1358/1472HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
STATegRa 1.12.0
David Gomez-Cabrero
Snapshot Date: 2018-04-11 16:45:18 -0400 (Wed, 11 Apr 2018)
URL: https://git.bioconductor.org/packages/STATegRa
Branch: RELEASE_3_6
Last Commit: 393cfc1
Last Changed Date: 2017-10-30 12:40:43 -0400 (Mon, 30 Oct 2017)
malbec1 Linux (Ubuntu 16.04.1 LTS) / x86_64  NotNeeded  OK  OK UNNEEDED, same version exists in internal repository
tokay1 Windows Server 2012 R2 Standard / x64  NotNeeded  OK  OK  OK UNNEEDED, same version exists in internal repository
veracruz1 OS X 10.11.6 El Capitan / x86_64  NotNeeded  OK [ OK ] OK UNNEEDED, same version exists in internal repository

Summary

Package: STATegRa
Version: 1.12.0
Command: /Library/Frameworks/R.framework/Versions/Current/Resources/bin/R CMD check --no-vignettes --timings STATegRa_1.12.0.tar.gz
StartedAt: 2018-04-12 10:02:21 -0400 (Thu, 12 Apr 2018)
EndedAt: 2018-04-12 10:06:34 -0400 (Thu, 12 Apr 2018)
EllapsedTime: 252.8 seconds
RetCode: 0
Status:  OK 
CheckDir: STATegRa.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Versions/Current/Resources/bin/R CMD check --no-vignettes --timings STATegRa_1.12.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.6-bioc/meat/STATegRa.Rcheck’
* using R version 3.4.4 (2018-03-15)
* using platform: x86_64-apple-darwin15.6.0 (64-bit)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘STATegRa/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘STATegRa’ version ‘1.12.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘STATegRa’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  6.5Mb
  sub-directories of 1Mb or more:
    data   2.4Mb
    doc    3.7Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... NOTE
biplotRes,caClass-character-numeric-character: no visible binding for
  global variable ‘values.1’
biplotRes,caClass-character-numeric-character: no visible binding for
  global variable ‘values.2’
biplotRes,caClass-character-numeric-character: no visible binding for
  global variable ‘color’
plotVAF,caClass: no visible binding for global variable ‘comp’
plotVAF,caClass: no visible binding for global variable ‘VAF’
plotVAF,caClass: no visible binding for global variable ‘block’
selectCommonComps,matrix-matrix-numeric: no visible binding for global
  variable ‘comps’
selectCommonComps,matrix-matrix-numeric: no visible binding for global
  variable ‘block’
selectCommonComps,matrix-matrix-numeric: no visible binding for global
  variable ‘comp’
selectCommonComps,matrix-matrix-numeric: no visible binding for global
  variable ‘ratio’
Undefined global functions or variables:
  VAF block color comp comps ratio values.1 values.2
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking installed files from ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU or elapsed time > 5s
           user system elapsed
biplotRes 6.668  0.188   6.967
plotRes   5.224  0.258   5.552
plotVAF   4.910  0.263   5.219
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘STATEgRa_Example.omicsCLUST.R’
  Running ‘STATEgRa_Example.omicsPCA.R’
  Running ‘STATegRa_Example.omicsNPC.R’
  Running ‘runTests.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.6-bioc/meat/STATegRa.Rcheck/00check.log’
for details.



Installation output

STATegRa.Rcheck/00install.out

* installing *source* package ‘STATegRa’ ...
** R
** data
** inst
** preparing package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded
* DONE (STATegRa)

Tests output

STATegRa.Rcheck/tests/runTests.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin15.6.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage("STATegRa")


RUNIT TEST PROTOCOL -- Thu Apr 12 10:06:29 2018 
*********************************************** 
Number of test functions: 9 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
STATegRa RUnit Tests - 9 test functions, 0 errors, 0 failures
Number of test functions: 9 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: In rownames(pData) == colnames(exprs) :
  longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
> 
> proc.time()
   user  system elapsed 
  4.681   0.182   5.251 

STATegRa.Rcheck/tests/STATEgRa_Example.omicsCLUST.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin15.6.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> #######   then the class is created.
> 
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
> 
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+                 metadata =  list(type_v1="Gene",type_v2="miRNA",
+                                  source_database="targetscan.Hs.eg.db",
+                                  data_extraction="July2014"),
+                 map=mapdata)
> 
> 
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> #####    the profile of the main features is computed through the surrogate features.
> 
> # Load Data
> data(STATegRa_S1)
>   #load("../data/STATegRa.S1.Rdata")
> 
> ## Create ExpressionSets
> #  source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
> 
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),     
+              reference = "Var1",
+              mapping = MAP.SYMBOL,
+              surrogateData = miRNA.ds,  ### miRNA data
+              referenceData = mRNA.ds,  ### mRNA data
+              maxitems=2,
+              selectionRule="sd",
+              expfac=NULL,
+              aggregation = "sum",
+              distance = "spearman",
+              noMappingDist = 0,
+              filtering = NULL,
+              name = "mRNAbymiRNA")
> 
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, cbind, colMeans, colSums, colnames, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int,
    pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min

Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.

> 
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+                  distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+                  map.name = "id",
+                  map.metadata = list(),
+                  params = list())
> 
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
> 
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
> 
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+                        bioDistList = bioDistList,
+                        weights=weights)
> length(bioDistWList)
[1] 4
> 
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
> 
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+                listDistW = bioDistWList,
+                method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
4: In plot.window(...) :
  relative range of values =  18 * EPS, is small (axis 2)
5: In plot.window(...) :
  relative range of values =  18 * EPS, is small (axis 2)
6: In plot.window(...) :
  relative range of values =  18 * EPS, is small (axis 2)
7: In plot.window(...) :
  relative range of values =  18 * EPS, is small (axis 2)
> 
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
> 
> ## IDH1
> 
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+                        listDistW = bioDistWList,
+                        threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
> 
> ## PDGFRA
> 
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> #                       listDistW = bioDistWList,
> #                       threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
> 
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
> 
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
> 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
 30.946   0.734  32.680 

STATegRa.Rcheck/tests/STATegRa_Example.omicsNPC.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin15.6.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
> 
> proc.time()
   user  system elapsed 
 76.032   1.133  78.782 

STATegRa.Rcheck/tests/STATEgRa_Example.omicsPCA.Rout


R version 3.4.4 (2018-03-15) -- "Someone to Lean On"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin15.6.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+     tmp <- ggplot_gtable(ggplot_build(a.gplot))
+     leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+     legend <- tmp$grobs[[leg]]
+     return(legend)}
> 
> #########################
> ## PART 1. Load data
> 
> ## Load data
> data(STATegRa_S3)
> 
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA"     "g_legend"  
> 
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> 
> #########################
> ## PART 2.  Model Selection
> 
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
> 
> ## 2.1 Select common components
> cc <- selectCommonComps(X=Block1.PCA,Y=Block2.PCA,Rmax=3)
> cc$common
[1] 2
> cc$pssq
> cc$pratios
> #png("modelSelection.png",width=822,height=416)
> grid.arrange(cc$pssq,cc$pratios,ncol=2)
> #dev.off()
> 
> ## 2.2 Select distinctive components
> # Block 1
> PCA.selection(Data=Block1.PCA,fac.sel="single%",varthreshold=0.03)$numComps
[1] 4
> # Block2
> PCA.selection(Data=Block2.PCA,fac.sel="single%",varthreshold=0.03)$numComps
[1] 4
> 
> ## 2.3 Optimal components analysis
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03)
> ms
$common
[1] 2

$dist
[1] 2 2

> 
> #########################
> ## PART 3. Component Analysis
> 
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=ms$common,Rspecific=ms$dist,center=TRUE,
+                               scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=ms$common,Rspecific=ms$dist,center=TRUE,
+                              scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=ms$common,Rspecific=ms$dist,center=TRUE,
+                               scale=TRUE,weight=TRUE)
> 
> ## 3.2 Exploring scores structures
> 
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
                      1             2
sample1    0.0781574325 -0.0431501870
sample2   -0.1192218398  0.0294088886
sample3   -0.0531412124 -0.0746839836
sample4    0.0292975172 -0.0005959647
sample5    0.0202091782  0.0110463672
sample6    0.1226089051  0.1053466979
sample7    0.1078928093 -0.0322476029
sample8    0.1782895307  0.1449364210
sample9    0.0468698140 -0.0455174365
sample10  -0.0036030489  0.0420111120
sample11  -0.0035566462 -0.0566292661
sample12   0.1006128901  0.0641380795
sample13  -0.1174408349  0.0907488497
sample14   0.0981203250  0.0617738030
sample15   0.0085334303 -0.0087013776
sample16   0.0783148663  0.1581294298
sample17  -0.1483609924  0.0638581976
sample18  -0.0963086272  0.0556639953
sample19  -0.0217244083 -0.0720086011
sample20  -0.0635636418 -0.0779653336
sample21  -0.0201840319  0.1566391347
sample22   0.0218268707 -0.0764104642
sample23   0.0852042044 -0.0032688429
sample24  -0.1287170604  0.1924544249
sample25  -0.0430574137 -0.0456565784
sample26  -0.1453896837  0.0541512514
sample27  -0.0197488830 -0.1185657165
sample28  -0.1025336299  0.0650685736
sample29   0.0706018473 -0.0682988333
sample30  -0.1295627559 -0.0066769808
sample31   0.1147449113  0.1232686440
sample32  -0.0374310885  0.0380177548
sample33   0.0599515964  0.0136866857
sample34  -0.0984200823  0.0375320832
sample35  -0.0543098394 -0.0378106288
sample36   0.1403625416 -0.0343756799
sample37   0.0228941832 -0.0732847157
sample38  -0.0222077277 -0.0962594906
sample39  -0.0941738484  0.0215199297
sample40   0.0643801106 -0.0687871835
sample41  -0.0327638032 -0.1232188178
sample42  -0.0500431838 -0.0292473139
sample43  -0.0184498821  0.0233010836
sample44   0.1487898816  0.1171355138
sample45  -0.1050774152  0.1123201884
sample46  -0.1151195742 -0.1094028924
sample47  -0.0962593745 -0.0288463964
sample48   0.0004837362 -0.0310277302
sample49   0.1135207796  0.1213973179
sample50  -0.0123553126 -0.1740743561
sample51   0.0550529889  0.1258886382
sample52   0.0499121251  0.0728544245
sample53   0.1119773654  0.1588013569
sample54  -0.0360055671  0.0228575488
sample55   0.0210419010  0.0006731542
sample56  -0.0434169213  0.0633125980
sample57   0.0197824640  0.1150713263
sample58   0.0030439884  0.0326097803
sample59   0.0500253093  0.0129418157
sample60   0.0184278640  0.0136084445
sample61   0.0150299423  0.0635025293
sample62  -0.0304763936 -0.0201319825
sample63   0.1102252486  0.1285977086
sample64   0.1552588091  0.0971168287
sample65  -0.0058503040  0.0207115521
sample66  -0.0025605326  0.0424320130
sample67   0.1546634784 -0.0661717465
sample68   0.0536369241 -0.0923684333
sample69   0.0640330351  0.0081982962
sample70   0.0163517718 -0.0663230066
sample71  -0.0102537634 -0.1345921058
sample72  -0.0654196071 -0.0196120217
sample73  -0.1048556155  0.0220937782
sample74   0.0123799482  0.0586114738
sample75   0.0392077936 -0.0209755300
sample76   0.0648953362 -0.0524764461
sample77   0.1172922112 -0.0201186622
sample78  -0.1463068077  0.0708473060
sample79   0.0265211218 -0.1603307002
sample80   0.0279737152 -0.0214205553
sample81   0.0079211493 -0.0738450489
sample82  -0.1544236538 -0.0361468014
sample83  -0.0494211445 -0.0050049449
sample84  -0.0259038447 -0.0346549291
sample85   0.1116484318 -0.0031498548
sample86  -0.1306483076 -0.0377215679
sample87  -0.0554778203 -0.0459749064
sample88  -0.0301623830  0.0382197429
sample89  -0.1016866720  0.0694033408
sample90   0.0086819859 -0.0201320092
sample91   0.1578625307 -0.2097828213
sample92   0.0170936861 -0.1655805755
sample93  -0.0979806835 -0.0121512323
sample94   0.0131484079 -0.0114932076
sample95   0.0315682632 -0.0758858556
sample96   0.0024125618 -0.0470135105
sample97   0.0634545413  0.0270332174
sample98  -0.0359374653 -0.0135488638
sample99  -0.1009163295  0.1124780714
sample100  0.0551753113  0.0246489485
sample101 -0.0080118915 -0.1627368080
sample102 -0.0046444243  0.0095633503
sample103 -0.0472523195 -0.0940393396
sample104  0.0198159510 -0.0591091055
sample105 -0.0400237780 -0.0160911699
sample106 -0.0923808405  0.0369017866
sample107 -0.1019373961  0.0224954035
sample108 -0.0877091655 -0.0128834032
sample109  0.0864824429 -0.0900940223
sample110 -0.1223115533 -0.0096085474
sample111  0.0257354666 -0.0936167957
sample112 -0.0765286612  0.0270347216
sample113  0.0258803283  0.0377497836
sample114  0.0021138905 -0.0882014623
sample115  0.0303460255 -0.0723584026
sample116  0.0780508455 -0.0685065275
sample117  0.0536898150 -0.0911907186
sample118  0.0666651156 -0.0236230688
sample119  0.1021871627 -0.2324935940
sample120  0.0750216554  0.0243379532
sample121 -0.0756936386  0.0942950423
sample122 -0.0259628039  0.0731987879
sample123 -0.1037846274 -0.0369197439
sample124  0.0611207951  0.0421724533
sample125 -0.0738472716  0.0066950132
sample126  0.0972916411  0.0762639430
sample127  0.0824697611 -0.0096637179
sample128 -0.1249407611  0.0929313391
sample129 -0.0734067560 -0.0434363481
sample130 -0.0003502024 -0.0309852631
sample131  0.0930182796  0.0155936790
sample132  0.0736222835  0.0733030482
sample133 -0.0498397968 -0.0462437304
sample134  0.1644873494  0.0720005188
sample135 -0.0752297223  0.0003817185
sample136  0.0227145731 -0.0495506417
sample137  0.0564717362 -0.0288916356
sample138  0.0255988131 -0.0610856213
sample139  0.0621217781  0.0235807097
sample140 -0.0604152568 -0.0435593922
sample141  0.0246743982  0.0532648859
sample142 -0.0409560289  0.0316280327
sample143 -0.0077355206 -0.0476896183
sample144  0.0173240830 -0.0156777873
sample145  0.0485474590  0.1202770944
sample146  0.0419645587 -0.0811281727
sample147 -0.0977308398 -0.0274840848
sample148  0.0368256218  0.0803979726
sample149 -0.0072865801 -0.1532985683
sample150  0.1020825279  0.0624774105
sample151  0.0305399090 -0.0289277556
sample152 -0.0533594794 -0.0638308754
sample153 -0.0891627542  0.1799579847
sample154 -0.0727557505 -0.0834161251
sample155 -0.0880668589 -0.0220820160
sample156 -0.0276561060 -0.0326625577
sample157 -0.1155032198  0.0183615897
sample158 -0.0281507523 -0.0104938960
sample159  0.0663235724  0.0443837626
sample160 -0.0302643880  0.0404265020
sample161  0.0114715595 -0.0591024846
sample162 -0.1337087094  0.1398135600
sample163  0.1330124509  0.1688781468
sample164 -0.0150336065  0.0028416586
sample165  0.0076520298 -0.0164128255
sample166  0.0367794397  0.0630662585
sample167  0.1111988856  0.0030057777
sample168 -0.0672981592  0.0446279433
sample169 -0.0413004988  0.0224393676
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
                      1             2
sample1    0.0420515337  0.0867863065
sample2    0.0820828370 -0.0410978156
sample3   -0.0155899106 -0.0195182297
sample4    0.1001337038 -0.0410786816
sample5    0.0153465806 -0.0253259708
sample6   -0.0340326762 -0.0408223219
sample7   -0.0722579529  0.0002332352
sample8    0.0457498700 -0.0370016383
sample9    0.0086249640  0.0820184916
sample10   0.0423598255 -0.0083923363
sample11  -0.0022548127  0.0787766080
sample12  -0.0322106051  0.1479824690
sample13   0.0293888958 -0.0306748721
sample14  -0.0337483232 -0.0367506854
sample15  -0.0815538861  0.1275622607
sample16  -0.0508453461  0.0540604622
sample17  -0.0062597130  0.0041023690
sample18  -0.0705640242 -0.0351047624
sample19   0.0476842308 -0.0509598101
sample20  -0.0522962096  0.0715521980
sample21   0.0119125326 -0.0376093201
sample22  -0.0724392412 -0.0095624966
sample23   0.0992532178  0.0134288656
sample24   0.1595116570  0.0728661678
sample25   0.0920693694 -0.0749757361
sample26   0.0595539864  0.0848965930
sample27  -0.0826484669 -0.0086735237
sample28   0.0384787718  0.0440966782
sample29  -0.0777670721  0.1735308663
sample30  -0.1229471278 -0.0819005342
sample31  -0.0579847430 -0.0238644754
sample32  -0.0970393479 -0.0111426186
sample33  -0.1017588111 -0.0630442433
sample34  -0.0637923079  0.0377941781
sample35  -0.0789984251 -0.0229723090
sample36  -0.1224939411 -0.1274954761
sample37  -0.1798820533 -0.1673427138
sample38  -0.0466303461  0.0888161073
sample39   0.0168687583  0.0421533722
sample40  -0.1756391860 -0.1526642074
sample41  -0.0042369680  0.0004928889
sample42   0.0447849964 -0.0651505045
sample43  -0.0482308632 -0.0253529215
sample44   0.1986713584 -0.0545778231
sample45   0.0741835516  0.0054703112
sample46  -0.0478771093 -0.0007071877
sample47  -0.0608188176  0.0481622743
sample48   0.1381489711  0.0578287597
sample49   0.0530519105 -0.1405532990
sample50   0.0173801645  0.1602389757
sample51  -0.0462562257  0.0303473819
sample52  -0.0280065861  0.0280388382
sample53  -0.0667622854  0.0237702032
sample54  -0.0121833841 -0.0521354317
sample55  -0.0182395972  0.0221328458
sample56   0.0001254918  0.0030907318
sample57  -0.0316676672  0.0530190247
sample58  -0.0393918501 -0.0297798710
sample59  -0.1278291165 -0.0546527782
sample60  -0.1486985324  0.1069156751
sample61  -0.0793123162  0.0569796594
sample62  -0.1172800765 -0.0149198305
sample63   0.0028725774  0.1300519744
sample64  -0.0237365481  0.1073287685
sample65   0.0126534807  0.0589808409
sample66   0.0468194276 -0.0771072784
sample67  -0.1494264339 -0.0769860052
sample68  -0.0977960452 -0.0577350856
sample69  -0.0403087252  0.0156042172
sample70  -0.0221530436  0.0315441037
sample71   0.0546435878 -0.0272396427
sample72  -0.1107487651 -0.0537319200
sample73  -0.0906761294  0.0579966728
sample74  -0.0586555934  0.0121421723
sample75  -0.0390493033  0.0349282883
sample76   0.0022960948 -0.1676558766
sample77   0.0232096114 -0.2067302820
sample78   0.0929754278 -0.0434939664
sample79   0.1619498241 -0.0378114364
sample80  -0.0680365163  0.1424663605
sample81   0.0530784796 -0.0358350872
sample82  -0.0266821589 -0.0577445042
sample83  -0.1517235118 -0.0448554115
sample84   0.0570967394 -0.0273813296
sample85  -0.1086289955 -0.1228119182
sample86  -0.0833859532 -0.0442914838
sample87  -0.0022018143 -0.0943906822
sample88   0.0078224219 -0.1140506573
sample89  -0.0611057907 -0.0094585107
sample90  -0.0022927944 -0.0936253973
sample91  -0.0433588096  0.3205982973
sample92   0.1815337016 -0.0334680444
sample93  -0.0267630436  0.0614429077
sample94  -0.0181877448  0.0605090445
sample95   0.0720376504 -0.0013045705
sample96   0.0559715316 -0.0118791460
sample97   0.0217410900  0.0195414102
sample98  -0.0379177099  0.0588357172
sample99   0.0792426264 -0.0151273981
sample100 -0.0222116620 -0.0023321419
sample101  0.0387230488  0.1224226272
sample102  0.2094613998 -0.0516442914
sample103 -0.0138480224  0.0301052036
sample104  0.0807987511 -0.0162718993
sample105  0.0520493331 -0.1229665224
sample106  0.0192612915 -0.0185238235
sample107 -0.0319017181  0.0405123326
sample108  0.0140691219  0.0163421374
sample109  0.1831931070  0.0613007363
sample110  0.0292790701 -0.0199849113
sample111  0.1423253039  0.0327340196
sample112 -0.0426333103 -0.0029083397
sample113  0.0771904174  0.0268733517
sample114  0.0241642368 -0.0184080387
sample115  0.1959016373  0.0460130455
sample116  0.1394476490 -0.0530805963
sample117  0.1672362408 -0.1386536576
sample118  0.0448344450 -0.0117621985
sample119  0.0910388914  0.2217433400
sample120  0.0331392059 -0.0057274555
sample121 -0.0307575587  0.1392506527
sample122  0.0839780425 -0.0291994580
sample123 -0.0239650104 -0.0642163666
sample124  0.0909150305  0.0130419351
sample125  0.0065350677 -0.1092631822
sample126 -0.0935312298  0.1368284127
sample127 -0.0035387654  0.0292755649
sample128  0.0660294818  0.1018566179
sample129 -0.0693638187 -0.0695421612
sample130 -0.0008493150 -0.0669704303
sample131 -0.0431024161  0.0174064913
sample132  0.0637039495  0.0029374592
sample133  0.0289495145 -0.0390818839
sample134 -0.0446203790  0.0456334512
sample135 -0.0712336871  0.0521635053
sample136 -0.0596270379  0.0197299439
sample137 -0.0793151671 -0.0380628178
sample138  0.0973548877 -0.0454218354
sample139 -0.0539905257 -0.1534327310
sample140 -0.0850826403  0.0955814678
sample141  0.0192681258 -0.0554450124
sample142  0.0672261576 -0.0461321025
sample143  0.0303730711 -0.0519260252
sample144  0.0089364761  0.0145814914
sample145  0.0638768562  0.0122258239
sample146 -0.0585855452  0.0063083481
sample147 -0.0894133186 -0.1124615561
sample148  0.0216365990 -0.0615967207
sample149  0.0515422032 -0.0839903467
sample150 -0.0568284049 -0.0124468891
sample151  0.0789532625 -0.0261831272
sample152  0.0330754302  0.1306443581
sample153  0.1751929598  0.1497731746
sample154 -0.0421423485 -0.0037010083
sample155 -0.0680177225  0.0095711340
sample156 -0.0388910622  0.1057563037
sample157 -0.0314769442  0.0561367458
sample158 -0.0329620415  0.0353947375
sample159  0.0398415962 -0.1007373857
sample160 -0.0424939182  0.0108496210
sample161  0.0888371702 -0.0679700256
sample162  0.0027474743  0.1237843769
sample163  0.0126103681  0.0725434216
sample164  0.0566779547 -0.0458324257
sample165  0.0315336437 -0.0236362381
sample166  0.0612057471 -0.0425233159
sample167 -0.0142729871  0.0179308291
sample168  0.0169502967 -0.0769617947
sample169 -0.0675080564  0.0131505406
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
                     1             2
sample1   -0.001232964  1.635717e-01
sample2   -0.072435005  6.021261e-03
sample3   -0.018846045  1.080036e-01
sample4    0.039014529 -3.114142e-04
sample5    0.177481164  2.996384e-02
sample6   -0.045144440  3.455858e-02
sample7   -0.022646627  7.020162e-03
sample8   -0.103368020  9.856784e-03
sample9    0.135001171 -8.979098e-02
sample10   0.125988727  5.097852e-02
sample11   0.097978834 -7.086534e-02
sample12  -0.086301908  8.620317e-02
sample13  -0.138140111 -1.828007e-01
sample14  -0.061507385  2.642803e-02
sample15   0.038159895  3.101664e-02
sample16  -0.004877670 -1.271842e-03
sample17  -0.078848092  1.547554e-02
sample18  -0.088418874  3.795487e-02
sample19   0.070304442  1.084004e-01
sample20  -0.002558556 -7.975874e-02
sample21   0.094160171  4.126741e-02
sample22  -0.055027343  7.806744e-02
sample23   0.067949531  4.102005e-02
sample24  -0.131096275 -1.649309e-01
sample25   0.011358528  4.426863e-02
sample26  -0.140294589 -2.016543e-02
sample27   0.026156109 -1.588443e-03
sample28  -0.072419870 -5.850592e-02
sample29  -0.033005860 -2.060825e-03
sample30  -0.022875256  2.015430e-02
sample31  -0.063506791  6.670334e-02
sample32   0.068509966  4.955273e-02
sample33  -0.077776521  1.272078e-01
sample34   0.015784243  3.024314e-02
sample35  -0.052963279 -1.500972e-01
sample36   0.007090071 -2.025307e-01
sample37  -0.044242066 -1.802089e-01
sample38  -0.078151132  3.676420e-02
sample39   0.012033187  3.388841e-02
sample40  -0.047329213 -1.471561e-01
sample41   0.022818938  2.673555e-02
sample42  -0.024536023  7.960867e-02
sample43   0.103636282  8.229577e-02
sample44  -0.101222877 -7.049451e-02
sample45   0.001373209  2.450911e-02
sample46  -0.055851005 -2.947380e-03
sample47  -0.038048119 -4.554173e-02
sample48   0.078434208 -4.888981e-02
sample49  -0.060516393  1.162355e-02
sample50   0.053007922  2.737933e-02
sample51   0.151464655 -5.678345e-02
sample52   0.186093523 -1.246717e-01
sample53  -0.006417706  2.700993e-02
sample54   0.069703835  2.308389e-02
sample55   0.163357703 -1.366442e-02
sample56   0.101148511 -4.682205e-02
sample57   0.173037422 -1.609603e-01
sample58  -0.007138470  1.666955e-02
sample59  -0.003046170 -3.005285e-02
sample60   0.021583509 -2.665877e-01
sample61   0.151058363 -1.002385e-01
sample62  -0.092553396  4.845842e-02
sample63  -0.059631176  4.137022e-02
sample64  -0.044922578  2.600580e-03
sample65   0.093938377  4.406909e-02
sample66   0.106340078  5.709992e-02
sample67  -0.020159009 -2.361728e-01
sample68   0.003720316 -2.418389e-02
sample69  -0.064516120  1.155622e-01
sample70  -0.101344002  1.351789e-01
sample71  -0.001646790  2.976842e-02
sample72   0.032889301  2.835858e-02
sample73   0.027508005  5.148186e-02
sample74   0.134171971  7.895280e-02
sample75   0.095157566  3.943184e-02
sample76  -0.086472198 -3.034991e-02
sample77  -0.103574957  2.545354e-02
sample78  -0.157564410 -4.939594e-02
sample79   0.018913704 -4.874679e-02
sample80   0.138414057 -4.265465e-05
sample81  -0.011884647  6.357932e-02
sample82  -0.167530818 -3.533911e-02
sample83  -0.006567341  7.812610e-02
sample84   0.148689161  3.109057e-02
sample85  -0.053272445 -7.417884e-02
sample86  -0.113847735  1.915793e-05
sample87   0.043286397 -6.080472e-02
sample88   0.043345036 -1.402491e-01
sample89   0.033120580  1.395401e-02
sample90  -0.060741281  8.610414e-02
sample91  -0.056627274 -1.303747e-01
sample92  -0.035958255 -1.061604e-01
sample93  -0.043364636  4.443635e-02
sample94  -0.047729129  1.059574e-01
sample95  -0.024959578  3.980525e-02
sample96   0.003521902  9.293928e-02
sample97  -0.006604872  1.527231e-01
sample98   0.002036682  5.579550e-02
sample99  -0.088661604  3.728226e-02
sample100 -0.109125913  3.560420e-02
sample101 -0.073972652  4.317999e-02
sample102  0.057446119  2.783914e-02
sample103  0.014273099 -9.705557e-03
sample104  0.071039519 -4.068351e-02
sample105  0.098083136  3.452952e-02
sample106 -0.025425930 -3.628984e-02
sample107 -0.016065342  9.173394e-02
sample108 -0.020098765  2.379692e-02
sample109 -0.038978067 -1.692359e-02
sample110 -0.032630484 -2.988109e-02
sample111  0.067693756  6.038212e-02
sample112  0.016788344 -5.336938e-03
sample113  0.096921704  2.757603e-02
sample114 -0.002639836  9.209157e-02
sample115 -0.030804732 -1.603823e-02
sample116 -0.124030720 -1.273000e-01
sample117  0.033472906 -5.392710e-02
sample118 -0.103715293 -6.252430e-02
sample119 -0.106417675 -1.196202e-01
sample120 -0.077135507  1.004933e-01
sample121 -0.012935073 -3.181976e-02
sample122  0.084749233  5.568326e-02
sample123 -0.004133679 -7.693179e-03
sample124 -0.058345797  8.396389e-02
sample125  0.063484462  5.232540e-02
sample126 -0.066258093  1.091733e-01
sample127 -0.086502460  1.094176e-01
sample128 -0.062781739  1.470963e-02
sample129 -0.033627646  4.007859e-02
sample130 -0.029351774  8.046117e-02
sample131 -0.046919767  2.209751e-03
sample132 -0.024174063  1.248598e-01
sample133  0.090730320 -1.466701e-02
sample134 -0.035084209 -7.539662e-02
sample135  0.000133340 -9.185378e-03
sample136 -0.033587607  9.860274e-02
sample137 -0.064014892  7.554470e-02
sample138  0.006096484  1.742762e-02
sample139 -0.059208447 -5.614969e-02
sample140  0.042798591  1.099551e-02
sample141  0.061879642  9.301038e-02
sample142  0.089855448 -3.573418e-02
sample143  0.081738919 -8.880524e-02
sample144  0.078775478  3.821391e-02
sample145  0.108582160 -1.569476e-01
sample146 -0.058955797  4.373360e-02
sample147 -0.049533045 -7.277198e-03
sample148  0.116159282 -9.079087e-03
sample149 -0.012157951 -7.788374e-02
sample150 -0.031451254 -3.520212e-02
sample151  0.057538217  1.945352e-02
sample152 -0.049454213 -7.025537e-02
sample153 -0.094133269 -2.153297e-01
sample154 -0.033593204 -2.078728e-02
sample155  0.069045764  2.780410e-02
sample156  0.103990162  6.292525e-02
sample157 -0.040864578 -8.065515e-03
sample158  0.101810530 -7.816877e-03
sample159 -0.028173052  1.207206e-02
sample160  0.164305302 -2.978108e-03
sample161  0.037432923 -8.524611e-02
sample162 -0.080453528 -8.349755e-02
sample163 -0.074322793  1.406225e-02
sample164  0.120880603  2.139460e-02
sample165  0.160811591 -2.025192e-02
sample166 -0.042594461  2.660714e-02
sample167 -0.022684948  4.464282e-02
sample168 -0.018073556  7.466190e-04
sample169  0.019077900 -2.645402e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
                   [,1]          [,2]
sample1   -0.0572060227 -1.729087e-02
sample2    0.0875245208  1.112588e-02
sample3    0.0403482602 -3.168994e-02
sample4   -0.0218345996  4.052760e-06
sample5   -0.0150905011  4.795041e-03
sample6   -0.0924362933  4.511003e-02
sample7   -0.0793066751 -1.243823e-02
sample8   -0.1342997187  6.215220e-02
sample9   -0.0338886944 -1.854401e-02
sample10   0.0020547173  1.749421e-02
sample11   0.0037275602 -2.364116e-02
sample12  -0.0753094533  2.772698e-02
sample13   0.0856160091  3.679963e-02
sample14  -0.0737457307  2.668452e-02
sample15  -0.0062111746 -3.554864e-03
sample16  -0.0602355268  6.675115e-02
sample17   0.1086768843  2.524534e-02
sample18   0.0702999472  2.231671e-02
sample19   0.0173785882 -3.024846e-02
sample20   0.0484173812 -3.310904e-02
sample21   0.0124657042  6.517144e-02
sample22  -0.0140989936 -3.159137e-02
sample23  -0.0627028403 -5.393710e-04
sample24   0.0919972100  7.909297e-02
sample25   0.0326998483 -1.945206e-02
sample26   0.1064741246  2.120849e-02
sample27   0.0166058995 -4.964993e-02
sample28   0.0743504770  2.614211e-02
sample29  -0.0511008491 -2.782647e-02
sample30   0.0962250842 -3.974893e-03
sample31  -0.0869563008  5.250819e-02
sample32   0.0271858919  1.552005e-02
sample33  -0.0448364581  6.243160e-03
sample34   0.0718415218  1.469396e-02
sample35   0.0403086451 -1.632629e-02
sample36  -0.1036402827 -1.304320e-02
sample37  -0.0159385744 -3.036525e-02
sample38   0.0182198369 -4.034805e-02
sample39   0.0690363619  8.058350e-03
sample40  -0.0467312750 -2.810325e-02
sample41   0.0263674438 -5.171216e-02
sample42   0.0374578960 -1.268634e-02
sample43   0.0132336869  9.536642e-03
sample44  -0.1119154428  5.028683e-02
sample45   0.0759639367  4.587903e-02
sample46   0.0871885519 -4.670385e-02
sample47   0.0721490571 -1.288540e-02
sample48   0.0005086144 -1.290565e-02
sample49  -0.0858177028  5.173760e-02
sample50   0.0118992665 -7.276215e-02
sample51  -0.0426446855  5.306205e-02
sample52  -0.0381605826  3.086785e-02
sample53  -0.0855757630  6.730043e-02
sample54   0.0261723092  9.184260e-03
sample55  -0.0156418304  4.682404e-04
sample56   0.0307831193  2.597550e-02
sample57  -0.0157242103  4.829381e-02
sample58  -0.0031174404  1.359898e-02
sample59  -0.0373001859  5.868397e-03
sample60  -0.0142609099  5.831654e-03
sample61  -0.0122255144  2.663579e-02
sample62   0.0228002942 -8.692265e-03
sample63  -0.0833127581  5.473229e-02
sample64  -0.1166548159  4.196500e-02
sample65   0.0038808902  8.568590e-03
sample66   0.0011561811  1.766612e-02
sample67  -0.1129311062 -2.608702e-02
sample68  -0.0382526429 -3.804045e-02
sample69  -0.0476502440  4.003241e-03
sample70  -0.0110329882 -2.752719e-02
sample71   0.0096850282 -5.627056e-02
sample72   0.0487124704 -8.800131e-03
sample73   0.0773058132  8.239864e-03
sample74  -0.0102488176  2.454957e-02
sample75  -0.0286613976 -8.387293e-03
sample76  -0.0472655595 -2.129315e-02
sample77  -0.0865043074 -7.296820e-03
sample78   0.1070293698  2.818346e-02
sample79  -0.0165060681 -6.659721e-02
sample80  -0.0206765949 -8.712112e-03
sample81  -0.0050943615 -3.079175e-02
sample82   0.1153622361 -1.647054e-02
sample83   0.0367979217 -2.538114e-03
sample84   0.0199463070 -1.468961e-02
sample85  -0.0827122185 -2.709824e-04
sample86   0.0969487314 -1.699897e-02
sample87   0.0421957457 -1.965953e-02
sample88   0.0215934743  1.566050e-02
sample89   0.0751559502  2.811652e-02
sample90  -0.0057328000 -8.283795e-03
sample91  -0.1134005268 -8.603522e-02
sample92  -0.0101689918 -6.894992e-02
sample93   0.0725967502 -6.003176e-03
sample94  -0.0096878852 -4.693081e-03
sample95  -0.0223502239 -3.139636e-02
sample96  -0.0013232863 -1.963604e-02
sample97  -0.0476541710  1.183660e-02
sample98   0.0269546160 -5.978398e-03
sample99   0.0728179461  4.597884e-02
sample100 -0.0413398038  1.079347e-02
sample101  0.0087536994 -6.796076e-02
sample102  0.0032509529  3.932612e-03
sample103  0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105  0.0294940465 -7.140722e-03
sample106  0.0686472054  1.462895e-02
sample107  0.0748635927  8.401339e-03
sample108  0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110  0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112  0.0570870472  1.066018e-02
sample113 -0.0200110554  1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586  1.089843e-02
sample121  0.0542443861  3.861344e-02
sample122  0.0178575357  3.027138e-02
sample123  0.0775020581 -1.636852e-02
sample124 -0.0460701050  1.814758e-02
sample125  0.0543846585  2.075898e-03
sample126 -0.0729417144  3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128  0.0908136899  3.758801e-02
sample129  0.0552445878 -1.879062e-02
sample130  0.0007128089 -1.294308e-02
sample131 -0.0693311345  7.357082e-03
sample132 -0.0556565156  3.126995e-02
sample133  0.0375870104 -1.977240e-02
sample134 -0.1229130924  3.159495e-02
sample135  0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201  1.040683e-02
sample140  0.0452288969 -1.876279e-02
sample141 -0.0189142561  2.247042e-02
sample142  0.0297545566  1.280524e-02
sample143  0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491  5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147  0.0726083535 -1.239968e-02
sample148 -0.0284795794  3.389732e-02
sample149  0.0082261455 -6.399305e-02
sample150 -0.0765013197  2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152  0.0403422737 -2.714879e-02
sample153  0.0629117719  7.425085e-02
sample154  0.0551622927 -3.548984e-02
sample155  0.0654439133 -1.005306e-02
sample156  0.0209310714 -1.390213e-02
sample157  0.0851522597  6.577150e-03
sample158  0.0208354599 -4.663078e-03
sample159 -0.0498794349  1.913257e-02
sample160  0.0216074437  1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162  0.0963663017  5.705881e-02
sample163 -0.1009542191  7.174224e-02
sample164  0.0109881996  1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357  2.673084e-02
sample167 -0.0825048036  2.278863e-03
sample168  0.0486147429  1.793843e-02
sample169  0.0302506727  8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
                   [,1]          [,2]
sample1   -0.0621842115 -1.364509e-02
sample2    0.0944623785  9.720892e-03
sample3    0.0406196267 -2.236338e-02
sample4   -0.0229316496 -3.932487e-04
sample5   -0.0157330047  3.231033e-03
sample6   -0.0945794025  3.120720e-02
sample7   -0.0854427118 -1.052880e-02
sample8   -0.1376625920  4.286608e-02
sample9   -0.0377115311 -1.415134e-02
sample10   0.0035244506  1.280825e-02
sample11   0.0016639987 -1.717895e-02
sample12  -0.0781403168  1.884368e-02
sample13   0.0938400516  2.838858e-02
sample14  -0.0759839772  1.810989e-02
sample15  -0.0068340837 -2.705361e-03
sample16  -0.0590150849  4.757848e-02
sample17   0.1178805097  2.040526e-02
sample18   0.0767858320  1.756604e-02
sample19   0.0157112113 -2.172867e-02
sample20   0.0485318300 -2.327033e-02
sample21   0.0185928176  4.777095e-02
sample22  -0.0191358702 -2.329775e-02
sample23  -0.0672994194 -1.535656e-03
sample24   0.1047476642  5.935707e-02
sample25   0.0329844953 -1.358036e-02
sample26   0.1154952052  1.741529e-02
sample27   0.0133849853 -3.590922e-02
sample28   0.0821554039  2.042376e-02
sample29  -0.0567643690 -2.123848e-02
sample30   0.1016073931 -1.134728e-03
sample31  -0.0880396372  3.670548e-02
sample32   0.0300363338  1.182406e-02
sample33  -0.0467252272  3.739254e-03
sample34   0.0783666394  1.203777e-02
sample35   0.0424227097 -1.118559e-02
sample36  -0.1107646166 -1.143464e-02
sample37  -0.0191667664 -2.246060e-02
sample38   0.0155968095 -2.909621e-02
sample39   0.0746847148  7.148218e-03
sample40  -0.0517028178 -2.137267e-02
sample41   0.0234979494 -3.723018e-02
sample42   0.0388797356 -8.557228e-03
sample43   0.0149555568  7.210002e-03
sample44  -0.1150305613  3.461805e-02
sample45   0.0846146236  3.486020e-02
sample46   0.0884426404 -3.246853e-02
sample47   0.0748644971 -8.083045e-03
sample48  -0.0012033198 -9.403647e-03
sample49  -0.0872662737  3.616245e-02
sample50   0.0066941314 -5.284863e-02
sample51  -0.0411777630  3.791830e-02
sample52  -0.0379355780  2.180834e-02
sample53  -0.0851639886  4.751761e-02
sample54   0.0288006248  7.184424e-03
sample55  -0.0164920835  5.919925e-05
sample56   0.0355115616  1.951043e-02
sample57  -0.0141146068  3.492409e-02
sample58  -0.0015636132  9.862883e-03
sample59  -0.0390656483  3.590929e-03
sample60  -0.0139454780  3.963030e-03
sample61  -0.0106410274  1.919705e-02
sample62   0.0236748439 -5.922677e-03
sample63  -0.0846790877  3.839102e-02
sample64  -0.1202581015  2.846469e-02
sample65   0.0050548584  6.328644e-03
sample66   0.0028013072  1.291807e-02
sample67  -0.1231623009 -2.112565e-02
sample68  -0.0437782161 -2.845072e-02
sample69  -0.0501199692  2.053469e-03
sample70  -0.0140278645 -2.027157e-02
sample71   0.0057489505 -4.085977e-02
sample72   0.0511212704 -5.522408e-03
sample73   0.0828141409  7.431582e-03
sample74  -0.0085959456  1.772951e-02
sample75  -0.0312180394 -6.636869e-03
sample76  -0.0519051781 -1.640191e-02
sample77  -0.0925924762 -6.907800e-03
sample78   0.1163971046  2.251122e-02
sample79  -0.0240906926 -4.887766e-02
sample80  -0.0221327065 -6.730703e-03
sample81  -0.0072114968 -2.254399e-02
sample82   0.1204416674 -9.907422e-03
sample83   0.0386739485 -1.171663e-03
sample84   0.0195988488 -1.033806e-02
sample85  -0.0877680171 -1.725057e-03
sample86   0.1023541048 -1.062501e-02
sample87   0.0425213089 -1.356865e-02
sample88   0.0244788514  1.180820e-02
sample89   0.0804276691  2.188588e-02
sample90  -0.0074639871 -6.140721e-03
sample91  -0.1278832404 -6.485140e-02
sample92  -0.0162199697 -5.048358e-02
sample93   0.0769344893 -3.045135e-03
sample94  -0.0104345587 -3.593172e-03
sample95  -0.0260058453 -2.330475e-02
sample96  -0.0025018700 -1.433516e-02
sample97  -0.0492358305  7.774183e-03
sample98   0.0279220220 -3.862141e-03
sample99   0.0813921923  3.487339e-02
sample100 -0.0428797405  7.112807e-03
sample101  0.0032855240 -4.940743e-02
sample102  0.0038439317  2.938008e-03
sample103  0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105  0.0314853405 -4.656633e-03
sample106  0.0726456731  1.192390e-02
sample107  0.0807342975  7.508627e-03
sample108  0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110  0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112  0.0599954082  8.820317e-03
sample113 -0.0195006577  1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131  6.937326e-03
sample121  0.0613899126  2.915307e-02
sample122  0.0218424338  2.241775e-02
sample123  0.0809008460 -1.051759e-02
sample124 -0.0472109313  1.239887e-02
sample125  0.0583180947  2.521167e-03
sample126 -0.0753941872  2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128  0.1000212216  2.908091e-02
sample129  0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877  4.091672e-03
sample132 -0.0566219024  2.179861e-02
sample133  0.0384172955 -1.372840e-02
sample134 -0.1280862736  2.077912e-02
sample135  0.0592633273  6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861  6.729304e-03
sample140  0.0468926306 -1.285498e-02
sample141 -0.0186248693  1.605439e-02
sample142  0.0328031246  9.887746e-03
sample143  0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310  3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147  0.0765025670 -7.714769e-03
sample148 -0.0276016641  2.420589e-02
sample149  0.0027545308 -4.653007e-02
sample150 -0.0792296010  1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152  0.0409796547 -1.907063e-02
sample153  0.0734301757  5.528780e-02
sample154  0.0557740684 -2.487723e-02
sample155  0.0689436560 -6.127635e-03
sample156  0.0212272938 -9.747423e-03
sample157  0.0911931194  6.355708e-03
sample158  0.0220840645 -3.016357e-03
sample159 -0.0513244242  1.304175e-02
sample160  0.0246213576  1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162  0.1078802043  4.337260e-02
sample163 -0.1017965082  5.047171e-02
sample164  0.0119430799  9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180  1.899222e-02
sample167 -0.0872832229  1.516582e-04
sample168  0.0540714512  1.397701e-02
sample169  0.0328432652  7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
                   [,1]          [,2]
sample1    0.0133684846  2.195848e-02
sample2    0.0254157197 -1.058416e-02
sample3   -0.0049551479 -4.840017e-03
sample4    0.0310390570 -1.063929e-02
sample5    0.0046941318 -6.488426e-03
sample6   -0.0107406753 -1.026702e-02
sample7   -0.0225157631  2.624712e-04
sample8    0.0141320952 -9.505821e-03
sample9    0.0029681280  2.078210e-02
sample10   0.0131729174 -2.275042e-03
sample11  -0.0004164298  1.994019e-02
sample12  -0.0095211620  3.759883e-02
sample13   0.0091018604 -7.953956e-03
sample14  -0.0106557524 -9.181659e-03
sample15  -0.0249924121  3.262724e-02
sample16  -0.0156216400  1.375700e-02
sample17  -0.0019382446  1.073994e-03
sample18  -0.0221072481 -8.703592e-03
sample19   0.0146917619 -1.311712e-02
sample20  -0.0160353760  1.826290e-02
sample21   0.0035947899 -9.616341e-03
sample22  -0.0225060762 -2.532589e-03
sample23   0.0310000683  3.033060e-03
sample24   0.0499544372  1.809450e-02
sample25   0.0284442301 -1.932558e-02
sample26   0.0188220043  2.146985e-02
sample27  -0.0257763219 -1.999228e-03
sample28   0.0120888648  1.125834e-02
sample29  -0.0236482520  4.426726e-02
sample30  -0.0385486305 -2.055935e-02
sample31  -0.0181539336 -5.877838e-03
sample32  -0.0302630460 -2.607192e-03
sample33  -0.0319565715 -1.562628e-02
sample34  -0.0197970124  9.906813e-03
sample35  -0.0247412713 -5.434440e-03
sample36  -0.0386259060 -3.190394e-02
sample37  -0.0566199273 -4.192574e-02
sample38  -0.0142060273  2.259644e-02
sample39   0.0053589035  1.076485e-02
sample40  -0.0552546493 -3.819896e-02
sample41  -0.0013089975  9.278818e-05
sample42   0.0137252142 -1.664652e-02
sample43  -0.0151259626 -6.290953e-03
sample44   0.0617391754 -1.442883e-02
sample45   0.0231410886  1.163143e-03
sample46  -0.0148898209 -1.384176e-04
sample47  -0.0187252536  1.221690e-02
sample48   0.0432839432  1.416671e-02
sample49   0.0160818605 -3.588745e-02
sample50   0.0059333545  4.067003e-02
sample51  -0.0142914866  7.776270e-03
sample52  -0.0086339952  7.208917e-03
sample53  -0.0207386980  6.272432e-03
sample54  -0.0039856719 -1.316934e-02
sample55  -0.0056217017  5.692315e-03
sample56   0.0000123292  8.978290e-04
sample57  -0.0095805555  1.324253e-02
sample58  -0.0124160295 -7.326376e-03
sample59  -0.0400195442 -1.349736e-02
sample60  -0.0460063358  2.770091e-02
sample61  -0.0245266456  1.470710e-02
sample62  -0.0366022783 -3.437352e-03
sample63   0.0013742171  3.288796e-02
sample64  -0.0070599859  2.739588e-02
sample65   0.0041201911  1.498268e-02
sample66   0.0143173351 -1.968812e-02
sample67  -0.0467477531 -1.929938e-02
sample68  -0.0306751978 -1.436184e-02
sample69  -0.0125317217  4.130407e-03
sample70  -0.0068071487  8.080857e-03
sample71   0.0169170264 -7.027348e-03
sample72  -0.0346909749 -1.333770e-02
sample73  -0.0280506153  1.493843e-02
sample74  -0.0182611498  3.294697e-03
sample75  -0.0120563964  8.974612e-03
sample76   0.0001437236 -4.253184e-02
sample77   0.0065330299 -5.252886e-02
sample78   0.0288278141 -1.127782e-02
sample79   0.0503961481 -1.023318e-02
sample80  -0.0207693429  3.648391e-02
sample81   0.0163562768 -9.074596e-03
sample82  -0.0084317129 -1.478976e-02
sample83  -0.0474097918 -1.103126e-02
sample84   0.0177181395 -7.191197e-03
sample85  -0.0342718548 -3.082360e-02
sample86  -0.0261671791 -1.089491e-02
sample87  -0.0009486358 -2.411514e-02
sample88   0.0020528931 -2.894615e-02
sample89  -0.0189361111 -2.638639e-03
sample90  -0.0009863658 -2.390075e-02
sample91  -0.0124352695  8.153234e-02
sample92   0.0564264106 -8.909537e-03
sample93  -0.0081461774  1.570851e-02
sample94  -0.0054896581  1.547251e-02
sample95   0.0224073150 -4.374348e-04
sample96   0.0173528924 -3.050441e-03
sample97   0.0067948115  5.008237e-03
sample98  -0.0116030825  1.498764e-02
sample99   0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101  0.0124923691  3.091503e-02
sample102  0.0650835386 -1.367400e-02
sample103 -0.0042741828  7.855985e-03
sample104  0.0250591040 -4.171938e-03
sample105  0.0157516368 -3.121990e-02
sample106  0.0060593853 -5.101693e-03
sample107 -0.0098329626  1.044506e-02
sample108  0.0044269853  4.142036e-03
sample109  0.0572473486  1.517542e-02
sample110  0.0090474827 -5.119868e-03
sample111  0.0444263015  7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113  0.0241047399  6.706740e-03
sample114  0.0074558775 -4.728652e-03
sample115  0.0611851433  1.117210e-02
sample116  0.0432646951 -1.380556e-02
sample117  0.0516750066 -3.575617e-02
sample118  0.0139942100 -3.279138e-03
sample119  0.0291722987  5.587946e-02
sample120  0.0103515853 -1.690016e-03
sample121 -0.0091396331  3.552116e-02
sample122  0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124  0.0283466326  3.127845e-03
sample125  0.0016472378 -2.770692e-02
sample126 -0.0286529417  3.489336e-02
sample127 -0.0010224500  7.483214e-03
sample128  0.0209049296  2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968  4.637390e-03
sample132  0.0198526786  5.723983e-04
sample133  0.0088812957 -9.988115e-03
sample134 -0.0137484514  1.172591e-02
sample135 -0.0220314568  1.347465e-02
sample136 -0.0185173353  5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138  0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762  2.456863e-02
sample141  0.0058369763 -1.420854e-02
sample142  0.0207886071 -1.188764e-02
sample143  0.0092832598 -1.324238e-02
sample144  0.0028442140  3.627979e-03
sample145  0.0199749569  2.862202e-03
sample146 -0.0182236697  1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148  0.0065435868 -1.572917e-02
sample149  0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151  0.0245166984 -6.888241e-03
sample152  0.0107259913  3.314630e-02
sample153  0.0550963965  3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574  2.642246e-03
sample156 -0.0117803505  2.698265e-02
sample157 -0.0096167165  1.433840e-02
sample158 -0.0101754772  9.137620e-03
sample159  0.0120662931 -2.565236e-02
sample160 -0.0132238202  2.916023e-03
sample161  0.0274491966 -1.748284e-02
sample162  0.0012482909  3.152261e-02
sample163  0.0042031315  1.830701e-02
sample164  0.0174896157 -1.175915e-02
sample165  0.0097517662 -6.119019e-03
sample166  0.0190134679 -1.121582e-02
sample167 -0.0044140836  4.665585e-03
sample168  0.0049689168 -1.941822e-02
sample169 -0.0209802098  3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
                   [,1]          [,2]
sample1   -0.0515543627 -0.0305856787
sample2   -0.0144993256  0.0236342950
sample3   -0.0371833108 -0.0140263348
sample4    0.0068945388 -0.0132539692
sample5    0.0215035333 -0.0663338101
sample6   -0.0187055152  0.0088773016
sample7   -0.0061521552  0.0064029054
sample8   -0.0210874459  0.0334652901
sample9    0.0516865043 -0.0291142799
sample10   0.0059440366 -0.0527217447
sample11   0.0393010793 -0.0200624712
sample12  -0.0420837100  0.0131331362
sample13   0.0333252565  0.0818552509
sample14  -0.0190062644  0.0160202175
sample15  -0.0030968049 -0.0189230681
sample16  -0.0004452158  0.0018880102
sample17  -0.0185848615  0.0240170131
sample18  -0.0273093598  0.0230213640
sample19  -0.0217761111 -0.0445894441
sample20   0.0245820821  0.0159812738
sample21   0.0034527644 -0.0400016054
sample22  -0.0340789054  0.0039289109
sample23  -0.0010344929 -0.0310161212
sample24   0.0289468503  0.0760962436
sample25  -0.0119098496 -0.0122798760
sample26  -0.0181001057  0.0517892852
sample27   0.0050465417 -0.0086515844
sample28   0.0057491502  0.0358830107
sample29  -0.0051104246  0.0116605117
sample30  -0.0103085904  0.0039678538
sample31  -0.0319929858  0.0090606113
sample32  -0.0036232521 -0.0328202010
sample33  -0.0534742153  0.0024751837
sample34  -0.0067495749 -0.0111000311
sample35   0.0378745721  0.0465929296
sample36   0.0647886800  0.0359987924
sample37   0.0488441236  0.0492906912
sample38  -0.0251514062  0.0197110110
sample39  -0.0085428066 -0.0105117852
sample40   0.0379324087  0.0440810741
sample41  -0.0044199152 -0.0128820644
sample42  -0.0292553573 -0.0067045265
sample43  -0.0077829155 -0.0510178219
sample44   0.0045122248  0.0479660309
sample45  -0.0074444298 -0.0051116726
sample46  -0.0088025512  0.0196186661
sample47   0.0076696301  0.0215947965
sample48   0.0290108585 -0.0175568376
sample49  -0.0141754858  0.0184717099
sample50   0.0006282201 -0.0233054373
sample51   0.0441995177 -0.0410022921
sample52   0.0715329391 -0.0399499475
sample53  -0.0095954087 -0.0029140909
sample54   0.0048933768 -0.0281884386
sample55   0.0327325487 -0.0532290012
sample56   0.0323068984 -0.0256595538
sample57   0.0806603122 -0.0286748097
sample58  -0.0064792049 -0.0006945349
sample59   0.0088958941  0.0067389649
sample60   0.0874124612  0.0431964341
sample61   0.0577604571 -0.0326112099
sample62  -0.0313318464  0.0224391756
sample63  -0.0233625220  0.0125110562
sample64  -0.0086426068  0.0148770341
sample65   0.0025256193 -0.0404466327
sample66   0.0006014071 -0.0471576264
sample67   0.0706087042  0.0516228406
sample68   0.0082301011  0.0033109509
sample69  -0.0475076743  0.0001452708
sample70  -0.0600773716  0.0089986962
sample71  -0.0096321627 -0.0050761187
sample72  -0.0031773546 -0.0166221542
sample73  -0.0113700517 -0.0191726684
sample74  -0.0014179662 -0.0608101325
sample75   0.0041911740 -0.0399981269
sample76  -0.0055326449  0.0353114263
sample77  -0.0260214459  0.0305731380
sample78  -0.0119267436  0.0632236007
sample79   0.0186017239  0.0027402910
sample80   0.0241047889 -0.0472697181
sample81  -0.0220288317 -0.0079577210
sample82  -0.0180751258  0.0639051029
sample83  -0.0256671713 -0.0125898269
sample84   0.0161392598 -0.0567222449
sample85   0.0139988188  0.0322763454
sample86  -0.0198382995  0.0389225776
sample87   0.0266270281 -0.0032979996
sample88   0.0515677078  0.0117902495
sample89   0.0014022125 -0.0140510488
sample90  -0.0375949749  0.0044004551
sample91   0.0310397965  0.0440610926
sample92   0.0270570567  0.0324380452
sample93  -0.0215009202  0.0063993941
sample94  -0.0415702912 -0.0037692077
sample95  -0.0168416047  0.0010019120
sample96  -0.0285582661 -0.0187991000
sample97  -0.0490843868 -0.0266760748
sample98  -0.0171579033 -0.0112897471
sample99  -0.0271316525  0.0232395583
sample100 -0.0301789816  0.0305498693
sample101 -0.0264371151  0.0170723968
sample102  0.0012767734 -0.0248949597
sample103  0.0055214687 -0.0030040587
sample104  0.0251346074 -0.0165212671
sample105  0.0062424215 -0.0400309901
sample106  0.0069768684  0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679  0.0023637162
sample109 -0.0014762845  0.0165583675
sample110  0.0036971063  0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112  0.0046098120 -0.0048009350
sample113  0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453  0.0135805368
sample116  0.0183575759  0.0665377581
sample117  0.0227640036 -0.0012287760
sample118  0.0015695248  0.0472617382
sample119  0.0190084932  0.0590034062
sample120 -0.0449645755  0.0072755697
sample121  0.0077307184  0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123  0.0016959300  0.0028593594
sample124 -0.0365091615  0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408  0.0019165544
sample127 -0.0494064872  0.0088209044
sample128 -0.0155454766  0.0186819802
sample129 -0.0184340400  0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422  0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133  0.0204029276 -0.0282209049
sample134  0.0175513332  0.0262883962
sample135  0.0029009925  0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323  0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139  0.0073103935  0.0308956174
sample140  0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142  0.0268670676 -0.0239229634
sample143  0.0421049126 -0.0110888235
sample144  0.0017253664 -0.0341766012
sample145  0.0681741320 -0.0073526377
sample146 -0.0239965222  0.0118396767
sample147 -0.0063453522  0.0183130585
sample148  0.0230825251 -0.0379753037
sample149  0.0223298673  0.0188909118
sample150  0.0055709108  0.0174179009
sample151  0.0039177786 -0.0233533275
sample152  0.0134325667  0.0302344591
sample153  0.0511990309  0.0730230140
sample154  0.0006698324  0.0154177486
sample155  0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599  0.0154934573
sample158  0.0201775524 -0.0332982124
sample159 -0.0086909001  0.0073496711
sample160  0.0295437331 -0.0555734536
sample161  0.0332754288  0.0033779619
sample162  0.0121954537  0.0433540412
sample163 -0.0173490933  0.0227219128
sample164  0.0143374783 -0.0453542590
sample165  0.0343612593 -0.0511194536
sample166 -0.0157536004  0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919  0.0060747155
sample169  0.0116231468 -0.0015112800
> 
> ## 3.3 Plotting VAF
> 
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
> 
> # JIVE plotVAF
> plotVAF(jiveRes)
> 
> 
> #########################
> ## PART 4. Plot Results
> 
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block="",color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block="",color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+              combined=TRUE,block="",color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> # Combined plot of scores for common part. DISCO.
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="common",
+              combined=TRUE,block="",color="classname")
Warning message:
In plotRes(object = discoRes, comps = c(1, 1), what = "scores",  :
  It is not possible to combine common components in DISCO-SCA approach.
> 
> 
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+              combined=TRUE,block="",color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=TRUE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=TRUE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common and distinctive part. DISCO  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=TRUE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=TRUE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> # Combined plot for loadings for common part. DISCO-SCA.
> plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+              combined=TRUE,block="",color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> # Combined plot for loadings for distinctive part
> plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+              combined=TRUE,block="",color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> # Combined plot for common and distinctive part  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=TRUE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=TRUE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> 
> #########################
> ## PART 5. Biplot results
> 
> ## Common components DISCO-SCA
> biplotRes(object=discoRes,type="common",comps=c(1,2),block="",title=NULL,
+                colorCol="classname",sizeValues=c(2,4),shapeValues=c(17,0),
+                background=TRUE,pointSize=4,labelSize=NULL,axisSize=NULL,
+                titleSize=NULL)
> 
> 
> ## Common components O2PLS
> p1 <- biplotRes(object=o2plsRes,type="common",comps=c(1,2),block="expr",title=NULL,
+                 colorCol="classname",sizeValues=c(2,4),shapeValues=c(17,0),
+                 background=TRUE,pointSize=4,labelSize=NULL,axisSize=NULL,
+                 titleSize=NULL)
Warning message:
In data.row.names(row.names, rowsi, i) :
  some row.names duplicated: 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338 --> row.names NOT used
> p2 <- biplotRes(object=o2plsRes,type="common",comps=c(1,2),block="mirna",title=NULL,
+                 colorCol="classname",sizeValues=c(2,4),shapeValues=c(17,0),
+                 background=TRUE,pointSize=4,labelSize=NULL,axisSize=NULL,titleSize=NULL)
Warning message:
In data.row.names(row.names, rowsi, i) :
  some row.names duplicated: 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338 --> row.names NOT used
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> ## Distintive components DISCO-SCA
> p1 <- biplotRes(object=discoRes,type="individual",comps=c(1,2),block="expr",title=NULL,
+                 colorCol="classname",sizeValues=c(2,4),shapeValues=c(17,0),
+                 background=TRUE,pointSize=4,labelSize=NULL,axisSize=NULL,
+                 titleSize=NULL)
Warning message:
In data.row.names(row.names, rowsi, i) :
  some row.names duplicated: 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338 --> row.names NOT used
> p2 <- biplotRes(object=discoRes,type="individual",comps=c(1,2),block="mirna",title=NULL,
+                 colorCol="classname",sizeValues=c(2,4),shapeValues=c(17,0),
+                 background=TRUE,pointSize=4,labelSize=NULL,axisSize=NULL,
+                 titleSize=NULL)
Warning message:
In data.row.names(row.names, rowsi, i) :
  some row.names duplicated: 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338 --> row.names NOT used
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> 
> 
> proc.time()
   user  system elapsed 
 18.114   0.413  19.142 

Example timings

STATegRa.Rcheck/STATegRa-Ex.timings

nameusersystemelapsed
PCA.selection0.1640.0090.180
STATegRaUsersGuide0.0010.0010.002
STATegRa_data0.2110.0170.232
STATegRa_data_TCGA_BRCA0.0030.0010.004
bioDist0.7030.0390.761
bioDistFeature1.3960.0281.454
bioDistFeaturePlot0.3690.0150.387
bioDistW0.3700.0150.397
bioDistWPlot0.4580.0150.478
bioMap0.0040.0010.007
biplotRes6.6680.1886.967
combiningMappings0.0850.0010.087
createOmicsExpressionSet0.1350.0050.146
getInitialData1.2420.1511.423
getLoadings2.5361.6714.296
getMethodInfo0.7030.1370.857
getPreprocessing1.1810.5331.737
getScores0.7110.1320.864
getVAF0.7140.1380.866
holistOmics0.0040.0010.005
modelSelection0.4370.0190.469
omicsCompAnalysis4.3310.2754.693
omicsNPC0.0030.0010.004
plotRes5.2240.2585.552
plotVAF4.9100.2635.219
selectCommonComps0.7020.0140.727