Back to Multiple platform build/check report for BioC 3.6 |
|
This page was generated on 2018-04-12 13:25:14 -0400 (Thu, 12 Apr 2018).
Package 1358/1472 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||
STATegRa 1.12.0 David Gomez-Cabrero
| malbec1 | Linux (Ubuntu 16.04.1 LTS) / x86_64 | NotNeeded | OK | OK | |||||||
tokay1 | Windows Server 2012 R2 Standard / x64 | NotNeeded | OK | [ OK ] | OK | |||||||
veracruz1 | OS X 10.11.6 El Capitan / x86_64 | NotNeeded | OK | OK | OK |
Package: STATegRa |
Version: 1.12.0 |
Command: rm -rf STATegRa.buildbin-libdir STATegRa.Rcheck && mkdir STATegRa.buildbin-libdir STATegRa.Rcheck && C:\Users\biocbuild\bbs-3.6-bioc\R\bin\R.exe CMD INSTALL --build --merge-multiarch --library=STATegRa.buildbin-libdir STATegRa_1.12.0.tar.gz >STATegRa.Rcheck\00install.out 2>&1 && cp STATegRa.Rcheck\00install.out STATegRa-install.out && C:\Users\biocbuild\bbs-3.6-bioc\R\bin\R.exe CMD check --library=STATegRa.buildbin-libdir --install="check:STATegRa-install.out" --force-multiarch --no-vignettes --timings STATegRa_1.12.0.tar.gz |
StartedAt: 2018-04-12 03:27:36 -0400 (Thu, 12 Apr 2018) |
EndedAt: 2018-04-12 03:34:23 -0400 (Thu, 12 Apr 2018) |
EllapsedTime: 406.7 seconds |
RetCode: 0 |
Status: OK |
CheckDir: STATegRa.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### rm -rf STATegRa.buildbin-libdir STATegRa.Rcheck && mkdir STATegRa.buildbin-libdir STATegRa.Rcheck && C:\Users\biocbuild\bbs-3.6-bioc\R\bin\R.exe CMD INSTALL --build --merge-multiarch --library=STATegRa.buildbin-libdir STATegRa_1.12.0.tar.gz >STATegRa.Rcheck\00install.out 2>&1 && cp STATegRa.Rcheck\00install.out STATegRa-install.out && C:\Users\biocbuild\bbs-3.6-bioc\R\bin\R.exe CMD check --library=STATegRa.buildbin-libdir --install="check:STATegRa-install.out" --force-multiarch --no-vignettes --timings STATegRa_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'C:/Users/biocbuild/bbs-3.6-bioc/meat/STATegRa.Rcheck' * using R version 3.4.4 (2018-03-15) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: ISO8859-1 * using option '--no-vignettes' * checking for file 'STATegRa/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'STATegRa' version '1.12.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'STATegRa' can be installed ... OK * checking installed package size ... NOTE installed size is 5.1Mb sub-directories of 1Mb or more: data 2.4Mb doc 2.1Mb * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * loading checks for arch 'i386' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK ** checking loading without being on the library search path ... OK * loading checks for arch 'x64' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK ** checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE biplotRes,caClass-character-numeric-character: no visible binding for global variable 'values.1' biplotRes,caClass-character-numeric-character: no visible binding for global variable 'values.2' biplotRes,caClass-character-numeric-character: no visible binding for global variable 'color' plotVAF,caClass: no visible binding for global variable 'comp' plotVAF,caClass: no visible binding for global variable 'VAF' plotVAF,caClass: no visible binding for global variable 'block' selectCommonComps,matrix-matrix-numeric: no visible binding for global variable 'comps' selectCommonComps,matrix-matrix-numeric: no visible binding for global variable 'block' selectCommonComps,matrix-matrix-numeric: no visible binding for global variable 'comp' selectCommonComps,matrix-matrix-numeric: no visible binding for global variable 'ratio' Undefined global functions or variables: VAF block color comp comps ratio values.1 values.2 * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking installed files from 'inst/doc' ... OK * checking files in 'vignettes' ... OK * checking examples ... ** running examples for arch 'i386' ... OK Examples with CPU or elapsed time > 5s user system elapsed biplotRes 5.86 0.12 5.99 plotRes 5.68 0.07 5.75 plotVAF 5.10 0.04 7.36 ** running examples for arch 'x64' ... OK Examples with CPU or elapsed time > 5s user system elapsed biplotRes 7.39 0.15 7.55 plotRes 5.63 0.09 5.73 plotVAF 5.17 0.11 5.28 * checking for unstated dependencies in 'tests' ... OK * checking tests ... ** running tests for arch 'i386' ... Running 'STATEgRa_Example.omicsCLUST.R' Running 'STATEgRa_Example.omicsPCA.R' Running 'STATegRa_Example.omicsNPC.R' Running 'runTests.R' OK ** running tests for arch 'x64' ... Running 'STATEgRa_Example.omicsCLUST.R' Running 'STATEgRa_Example.omicsPCA.R' Running 'STATegRa_Example.omicsNPC.R' Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See 'C:/Users/biocbuild/bbs-3.6-bioc/meat/STATegRa.Rcheck/00check.log' for details.
STATegRa.Rcheck/00install.out
install for i386 * installing *source* package 'STATegRa' ... ** R ** data ** inst ** preparing package for lazy loading ** help *** installing help indices converting help for package 'STATegRa' finding HTML links ... done PCA.selection html STATegRa-defunct html STATegRa html STATegRaUsersGuide html STATegRa_data html STATegRa_data_TCGA_BRCA html bioDist html bioDistFeature html bioDistFeaturePlot html bioDistW html bioDistWPlot html bioDistclass html bioMap html biplotRes html caClass-class html combiningMappings html createOmicsExpressionSet html getInitialData html getLoadings html getMethodInfo html getPreprocessing html getScores html getVAF html holistOmics html modelSelection html omicsCompAnalysis html omicsNPC html plotRes html plotVAF html selectCommonComps html finding level-2 HTML links ... done ** building package indices ** installing vignettes ** testing if installed package can be loaded In R CMD INSTALL install for x64 * installing *source* package 'STATegRa' ... ** testing if installed package can be loaded * MD5 sums packaged installation of 'STATegRa' as STATegRa_1.12.0.zip * DONE (STATegRa) In R CMD INSTALL In R CMD INSTALL
STATegRa.Rcheck/tests_i386/runTests.Rout R version 3.4.4 (2018-03-15) -- "Someone to Lean On" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage("STATegRa") RUNIT TEST PROTOCOL -- Thu Apr 12 03:32:07 2018 *********************************************** Number of test functions: 9 Number of errors: 0 Number of failures: 0 1 Test Suite : STATegRa RUnit Tests - 9 test functions, 0 errors, 0 failures Number of test functions: 9 Number of errors: 0 Number of failures: 0 Warning messages: 1: In rownames(pData) == colnames(exprs) : longer object length is not a multiple of shorter object length 2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2 3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3 > > proc.time() user system elapsed 4.48 0.25 4.79 |
STATegRa.Rcheck/tests_x64/runTests.Rout R version 3.4.4 (2018-03-15) -- "Someone to Lean On" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage("STATegRa") RUNIT TEST PROTOCOL -- Thu Apr 12 03:34:18 2018 *********************************************** Number of test functions: 9 Number of errors: 0 Number of failures: 0 1 Test Suite : STATegRa RUnit Tests - 9 test functions, 0 errors, 0 failures Number of test functions: 9 Number of errors: 0 Number of failures: 0 Warning messages: 1: In rownames(pData) == colnames(exprs) : longer object length is not a multiple of shorter object length 2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2 3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3 > > proc.time() user system elapsed 4.54 0.28 4.92 |
STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsCLUST.Rout R version 3.4.4 (2018-03-15) -- "Someone to Lean On" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSCLUSTERING > ########################################### > require(STATegRa) Loading required package: STATegRa > > ############################################# > ## PART 1: CREATING a bioMap CLASS > ############################################# > ####### This part creates or reads the map between features. > ####### In the present example the map is downloaded from a resource. > ####### then the class is created. > > #load("../data/STATegRa_S2.rda") > data(STATegRa_S2) > > MAP.SYMBOL<-bioMap(name = "Symbol-miRNA", + metadata = list(type_v1="Gene",type_v2="miRNA", + source_database="targetscan.Hs.eg.db", + data_extraction="July2014"), + map=mapdata) > > > ############################################# > ## PART 2: CREATING a bioDist CLASS > ############################################# > ##### In the second part given a set of main features and surrogate feautres, > ##### the profile of the main features is computed through the surrogate features. > > # Load Data > data(STATegRa_S1) > #load("../data/STATegRa.S1.Rdata") > > ## Create ExpressionSets > # source("../R/STATegRa_omicsPCA_classes_and_methods.R") > # Block1 - Expression data > mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) > # Block2 - miRNA expression data > miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) > > # Create Gene-gene distance computed through miRNA data > bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), + reference = "Var1", + mapping = MAP.SYMBOL, + surrogateData = miRNA.ds, ### miRNA data + referenceData = mRNA.ds, ### mRNA data + maxitems=2, + selectionRule="sd", + expfac=NULL, + aggregation = "sum", + distance = "spearman", + noMappingDist = 0, + filtering = NULL, + name = "mRNAbymiRNA") > > require(Biobase) Loading required package: Biobase Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, cbind, colMeans, colSums, colnames, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. > > # Create Gene-gene distance through mRNA data > bioDistmRNA<-bioDistclass(name = "mRNAbymRNA", + distance = cor(t(exprs(mRNA.ds)),method="spearman"), + map.name = "id", + map.metadata = list(), + params = list()) > > ############################################# > ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList > ############################################# > > bioDistList<-list(bioDistmRNA,bioDistmiRNA) > weights<-matrix(0,4,2) > weights[,1]<-c(0,0.33,0.67,1) > weights[,2]<-c(1,0.67,0.33,0)# > > bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), + bioDistList = bioDistList, + weights=weights) > length(bioDistWList) [1] 4 > > ############################################# > ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL > ############################################# > > bioDistWPlot(referenceFeatures = rownames(Block1) , + listDistW = bioDistWList, + method.cor="spearman") Warning messages: 1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties > > ############################################# > ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE > ############################################# > > ## IDH1 > > IDH1.F<-bioDistFeature(Feature = "IDH1" , + listDistW = bioDistWList, + threshold.cor=0.7) > bioDistFeaturePlot(data=IDH1.F) > > ## PDGFRA > > #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png") > > ## EGFR > #EGFR.F<-bioDistFeature(Feature = "EGFR" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png") > > ## MGMT > #MGMT.F<-bioDistFeature(Feature = "MGMT" , > # listDistW = bioDistWList, > # threshold.cor=0.5) > #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png") > > > > > > proc.time() user system elapsed 28.82 0.78 29.68 |
STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsCLUST.Rout R version 3.4.4 (2018-03-15) -- "Someone to Lean On" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSCLUSTERING > ########################################### > require(STATegRa) Loading required package: STATegRa > > ############################################# > ## PART 1: CREATING a bioMap CLASS > ############################################# > ####### This part creates or reads the map between features. > ####### In the present example the map is downloaded from a resource. > ####### then the class is created. > > #load("../data/STATegRa_S2.rda") > data(STATegRa_S2) > > MAP.SYMBOL<-bioMap(name = "Symbol-miRNA", + metadata = list(type_v1="Gene",type_v2="miRNA", + source_database="targetscan.Hs.eg.db", + data_extraction="July2014"), + map=mapdata) > > > ############################################# > ## PART 2: CREATING a bioDist CLASS > ############################################# > ##### In the second part given a set of main features and surrogate feautres, > ##### the profile of the main features is computed through the surrogate features. > > # Load Data > data(STATegRa_S1) > #load("../data/STATegRa.S1.Rdata") > > ## Create ExpressionSets > # source("../R/STATegRa_omicsPCA_classes_and_methods.R") > # Block1 - Expression data > mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) > # Block2 - miRNA expression data > miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) > > # Create Gene-gene distance computed through miRNA data > bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), + reference = "Var1", + mapping = MAP.SYMBOL, + surrogateData = miRNA.ds, ### miRNA data + referenceData = mRNA.ds, ### mRNA data + maxitems=2, + selectionRule="sd", + expfac=NULL, + aggregation = "sum", + distance = "spearman", + noMappingDist = 0, + filtering = NULL, + name = "mRNAbymiRNA") > > require(Biobase) Loading required package: Biobase Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, cbind, colMeans, colSums, colnames, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. > > # Create Gene-gene distance through mRNA data > bioDistmRNA<-bioDistclass(name = "mRNAbymRNA", + distance = cor(t(exprs(mRNA.ds)),method="spearman"), + map.name = "id", + map.metadata = list(), + params = list()) > > ############################################# > ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList > ############################################# > > bioDistList<-list(bioDistmRNA,bioDistmiRNA) > weights<-matrix(0,4,2) > weights[,1]<-c(0,0.33,0.67,1) > weights[,2]<-c(1,0.67,0.33,0)# > > bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), + bioDistList = bioDistList, + weights=weights) > length(bioDistWList) [1] 4 > > ############################################# > ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL > ############################################# > > bioDistWPlot(referenceFeatures = rownames(Block1) , + listDistW = bioDistWList, + method.cor="spearman") Warning messages: 1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 4: In plot.window(...) : relative range of values = 18 * EPS, is small (axis 2) 5: In plot.window(...) : relative range of values = 18 * EPS, is small (axis 2) 6: In plot.window(...) : relative range of values = 18 * EPS, is small (axis 2) 7: In plot.window(...) : relative range of values = 18 * EPS, is small (axis 2) > > ############################################# > ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE > ############################################# > > ## IDH1 > > IDH1.F<-bioDistFeature(Feature = "IDH1" , + listDistW = bioDistWList, + threshold.cor=0.7) > bioDistFeaturePlot(data=IDH1.F) > > ## PDGFRA > > #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png") > > ## EGFR > #EGFR.F<-bioDistFeature(Feature = "EGFR" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png") > > ## MGMT > #MGMT.F<-bioDistFeature(Feature = "MGMT" , > # listDistW = bioDistWList, > # threshold.cor=0.5) > #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png") > > > > > > proc.time() user system elapsed 26.20 1.10 27.42 |
STATegRa.Rcheck/tests_i386/STATegRa_Example.omicsNPC.Rout R version 3.4.4 (2018-03-15) -- "Someone to Lean On" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > rm(list = ls()) > require("STATegRa") Loading required package: STATegRa > # Load the data > data("TCGA_BRCA_Batch_93") > # Setting dataTypes > dataTypes <- c("count", "count", "continuous") > # Setting methods to combine pvalues > combMethods = c("Fisher", "Liptak", "Tippett") > # Setting number of permutations > numPerms = 1000 > # Setting number of cores > numCores = 1 > # Setting holistOmics to print out the steps that it performs. > verbose = TRUE > # Run holistOmics analysis. > output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose) Compute initial statistics on data Building NULL distributions by permuting data Compute pseudo p-values based on NULL distributions... NPC p-values calculation... > > proc.time() user system elapsed 64.17 0.07 64.39 |
STATegRa.Rcheck/tests_x64/STATegRa_Example.omicsNPC.Rout R version 3.4.4 (2018-03-15) -- "Someone to Lean On" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > rm(list = ls()) > require("STATegRa") Loading required package: STATegRa > # Load the data > data("TCGA_BRCA_Batch_93") > # Setting dataTypes > dataTypes <- c("count", "count", "continuous") > # Setting methods to combine pvalues > combMethods = c("Fisher", "Liptak", "Tippett") > # Setting number of permutations > numPerms = 1000 > # Setting number of cores > numCores = 1 > # Setting holistOmics to print out the steps that it performs. > verbose = TRUE > # Run holistOmics analysis. > output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose) Compute initial statistics on data Building NULL distributions by permuting data Compute pseudo p-values based on NULL distributions... NPC p-values calculation... > > proc.time() user system elapsed 76.85 0.18 77.17 |
STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsPCA.Rout R version 3.4.4 (2018-03-15) -- "Someone to Lean On" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSPCA > ########################################### > require(STATegRa) Loading required package: STATegRa > > # g_legend (not exported by STATegRa any more) > ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs > g_legend<-function(a.gplot){ + tmp <- ggplot_gtable(ggplot_build(a.gplot)) + leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") + legend <- tmp$grobs[[leg]] + return(legend)} > > ######################### > ## PART 1. Load data > > ## Load data > data(STATegRa_S3) > > ls() [1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend" > > ## Create ExpressionSets > # Block1 - Expression data > B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname")) > # Block2 - miRNA expression data > B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname")) > > ######################### > ## PART 2. Model Selection > > require(grid) Loading required package: grid > require(gridExtra) Loading required package: gridExtra > require(ggplot2) Loading required package: ggplot2 > > ## 2.1 Select common components > cc <- selectCommonComps(X=Block1.PCA,Y=Block2.PCA,Rmax=3) > cc$common [1] 2 > cc$pssq > cc$pratios > #png("modelSelection.png",width=822,height=416) > grid.arrange(cc$pssq,cc$pratios,ncol=2) > #dev.off() > > ## 2.2 Select distinctive components > # Block 1 > PCA.selection(Data=Block1.PCA,fac.sel="single%",varthreshold=0.03)$numComps [1] 4 > # Block2 > PCA.selection(Data=Block2.PCA,fac.sel="single%",varthreshold=0.03)$numComps [1] 4 > > ## 2.3 Optimal components analysis > ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03) > ms $common [1] 2 $dist [1] 2 2 > > ######################### > ## PART 3. Component Analysis > > ## 3.1 Component analysis of the three methods > discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=ms$common,Rspecific=ms$dist,center=TRUE, + scale=TRUE,weight=TRUE) > jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=ms$common,Rspecific=ms$dist,center=TRUE, + scale=TRUE,weight=TRUE) > o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=ms$common,Rspecific=ms$dist,center=TRUE, + scale=TRUE,weight=TRUE) > > ## 3.2 Exploring scores structures > > # Exploring DISCO-SCA scores structure > discoRes@scores$common ## Common scores 1 2 sample1 -0.0781574364 0.0431503507 sample2 0.1192218502 -0.0294086595 sample3 0.0531412010 0.0746839750 sample4 -0.0292975057 0.0005962210 sample5 -0.0202091755 -0.0110463361 sample6 -0.1226089033 -0.1053467897 sample7 -0.1078928204 0.0322474063 sample8 -0.1782895165 -0.1449363062 sample9 -0.0468698114 0.0455174315 sample10 0.0036030559 -0.0420109951 sample11 0.0035566458 0.0566292434 sample12 -0.1006128922 -0.0641381226 sample13 0.1174408503 -0.0907488078 sample14 -0.0981203261 -0.0617738927 sample15 -0.0085334403 0.0087011822 sample16 -0.0783148604 -0.1581295638 sample17 0.1483609951 -0.0638581927 sample18 0.0963086207 -0.0556641637 sample19 0.0217244048 0.0720087481 sample20 0.0635636335 0.0779651860 sample21 0.0201840436 -0.1566391020 sample22 -0.0218268879 0.0764102944 sample23 -0.0852041942 0.0032691094 sample24 0.1287170980 -0.1924540174 sample25 0.0430574189 0.0456568286 sample26 0.1453896945 -0.0541510662 sample27 0.0197488653 0.1185654942 sample28 0.1025336409 -0.0650684689 sample29 -0.0706018603 0.0682986456 sample30 0.1295627399 0.0066766592 sample31 -0.1147449122 -0.1232687864 sample32 0.0374310788 -0.0380180034 sample33 -0.0599516128 -0.0136869279 sample34 0.0984200770 -0.0375322338 sample35 0.0543098327 0.0378103812 sample36 -0.1403625512 0.0343752694 sample37 -0.0228942037 0.0732841656 sample38 0.0222077139 0.0962593958 sample39 0.0941738510 -0.0215198638 sample40 -0.0643801315 0.0687866532 sample41 0.0327637931 0.1232188147 sample42 0.0500431832 0.0292474525 sample43 0.0184498759 -0.0233011988 sample44 -0.1487898490 -0.1171350143 sample45 0.1050774309 -0.1123199757 sample46 0.1151195605 0.1094027764 sample47 0.0962593671 0.0288462377 sample48 -0.0004837198 0.0310280863 sample49 -0.1135207665 -0.1213971953 sample50 0.0123553024 0.1740744280 sample51 -0.0550529815 -0.1258887888 sample52 -0.0499121167 -0.0728545480 sample53 -0.1119773626 -0.1588015317 sample54 0.0360055667 -0.0228575843 sample55 -0.0210419010 -0.0006732176 sample56 0.0434169285 -0.0633126148 sample57 -0.0197824516 -0.1150714633 sample58 -0.0030439915 -0.0326098842 sample59 -0.0500253222 -0.0129421753 sample60 -0.0184278693 -0.0136089043 sample61 -0.0150299414 -0.0635027737 sample62 0.0304763761 0.0201316908 sample63 -0.1102252403 -0.1285976758 sample64 -0.1552588046 -0.0971168850 sample65 0.0058503064 -0.0207115049 sample66 0.0025605393 -0.0424318902 sample67 -0.1546634920 0.0661712624 sample68 -0.0536369413 0.0923681542 sample69 -0.0640330439 -0.0081983689 sample70 -0.0163517848 0.0663229961 sample71 0.0102537587 0.1345922570 sample72 0.0654195920 0.0196117298 sample73 0.1048556054 -0.0220939924 sample74 -0.0123799525 -0.0586116174 sample75 -0.0392078000 0.0209754315 sample76 -0.0648953403 0.0524764236 sample77 -0.1172922131 0.0201187034 sample78 0.1463068237 -0.0708470554 sample79 -0.0265211130 0.1603311098 sample80 -0.0279737226 0.0214203802 sample81 -0.0079211512 0.0738452038 sample82 0.1544236477 0.0361467366 sample83 0.0494211235 0.0050045606 sample84 0.0259038487 0.0346550771 sample85 -0.1116484428 0.0031495245 sample86 0.1306482941 0.0377213579 sample87 0.0554778188 0.0459748719 sample88 0.0301623916 -0.0382197774 sample89 0.1016866697 -0.0694034961 sample90 -0.0086819919 0.0201320189 sample91 -0.1578625446 0.2097827041 sample92 -0.0170936737 0.1655810266 sample93 0.0979806779 0.0121511918 sample94 -0.0131484148 0.0114931994 sample95 -0.0315682621 0.0758860582 sample96 -0.0024125624 0.0470136837 sample97 -0.0634545425 -0.0270331182 sample98 0.0359374582 0.0135487885 sample99 0.1009163445 -0.1124778379 sample100 -0.0551753143 -0.0246489938 sample101 0.0080118827 0.1627369454 sample102 0.0046444480 -0.0095627951 sample103 0.0472523118 0.0940393062 sample104 -0.0198159440 0.0591093005 sample105 0.0400237816 0.0160912977 sample106 0.0923808464 -0.0369017393 sample107 0.1019373907 -0.0224954489 sample108 0.0877091652 0.0128834573 sample109 -0.0864824278 0.0900945104 sample110 0.1223115567 0.0096086257 sample111 -0.0257354586 0.0936171892 sample112 0.0765286586 -0.0270348328 sample113 -0.0258803169 -0.0377495758 sample114 -0.0021138977 0.0882015502 sample115 -0.0303460077 0.0723589262 sample116 -0.0780508311 0.0685068602 sample117 -0.0536898010 0.0911911246 sample118 -0.0666651107 0.0236231722 sample119 -0.1021871642 0.2324938327 sample120 -0.0750216543 -0.0243378371 sample121 0.0756936438 -0.0942951085 sample122 0.0259628172 -0.0731985568 sample123 0.1037846219 0.0369196773 sample124 -0.0611207853 -0.0421721858 sample125 0.0738472707 -0.0066949949 sample126 -0.0972916502 -0.0762641457 sample127 -0.0824697669 0.0096637435 sample128 0.1249407748 -0.0929311320 sample129 0.0734067427 0.0434361732 sample130 0.0003501964 0.0309852768 sample131 -0.0930182838 -0.0155937942 sample132 -0.0736222757 -0.0733028466 sample133 0.0498397978 0.0462437951 sample134 -0.1644873465 -0.0720006621 sample135 0.0752297148 -0.0003818987 sample136 -0.0227145873 0.0495505139 sample137 -0.0564717509 0.0288914412 sample138 -0.0255988072 0.0610858774 sample139 -0.0621217818 -0.0235808894 sample140 0.0604152445 0.0435591822 sample141 -0.0246743954 -0.0532648222 sample142 0.0409560407 -0.0316278734 sample143 0.0077355244 0.0476896620 sample144 -0.0173240838 0.0156778165 sample145 -0.0485474361 -0.1202769783 sample146 -0.0419645733 0.0811280310 sample147 0.0977308268 0.0274838405 sample148 -0.0368256126 -0.0803979369 sample149 0.0072865773 0.1532986743 sample150 -0.1020825289 -0.0624775784 sample151 -0.0305399024 0.0289279615 sample152 0.0533594815 0.0638309685 sample153 0.0891627954 -0.1799575451 sample154 0.0727557401 0.0834160142 sample155 0.0880668491 0.0220818449 sample156 0.0276560983 0.0326624797 sample157 0.1155032178 -0.0183616571 sample158 0.0281507491 0.0104938050 sample159 -0.0663235659 -0.0443836689 sample160 0.0302643876 -0.0404266249 sample161 -0.0114715505 0.0591026849 sample162 0.1337087229 -0.1398135441 sample163 -0.1330124381 -0.1688781038 sample164 0.0150336132 -0.0028415156 sample165 -0.0076520254 0.0164128881 sample166 -0.0367794298 -0.0630660930 sample167 -0.1111988887 -0.0030058072 sample168 0.0672981637 -0.0446279017 sample169 0.0413004939 -0.0224395516 > discoRes@scores$dist[[1]] ## Distinctive scores for Block 1 1 2 sample1 -0.0420513529 0.0867863168 sample2 -0.0820829106 -0.0410977814 sample3 0.0155901371 -0.0195182462 sample4 -0.1001337242 -0.0410786432 sample5 -0.0153466274 -0.0253259631 sample6 0.0340323780 -0.0408223207 sample7 0.0722580301 0.0002332039 sample8 -0.0457502806 -0.0370016011 sample9 -0.0086248495 0.0820184898 sample10 -0.0423599364 -0.0083923145 sample11 0.0022549689 0.0787766002 sample12 0.0322105074 0.1479824652 sample13 -0.0293891723 -0.0306748494 sample14 0.0337481446 -0.0367506898 sample15 0.0815539621 0.1275622285 sample16 0.0508449365 0.0540604640 sample17 0.0062595711 0.0041023739 sample18 0.0705638896 -0.0351047830 sample19 -0.0476840334 -0.0509598017 sample20 0.0522964318 0.0715521678 sample21 -0.0119129584 -0.0376092951 sample22 0.0724394625 -0.0095625345 sample23 -0.0992532083 0.0134289035 sample24 -0.1595121597 0.0728662534 sample25 -0.0920692610 -0.0749757073 sample26 -0.0595540765 0.0848966217 sample27 0.0826487795 -0.0086735708 sample28 -0.0384789263 0.0440967009 sample29 0.0777673141 0.1735308280 sample30 0.1229471359 -0.0819005828 sample31 0.0579844139 -0.0238644811 sample32 0.0970392542 -0.0111426508 sample33 0.1017587818 -0.0630442806 sample34 0.0637922401 0.0377941580 sample35 0.0789984890 -0.0229723440 sample36 0.1224939160 -0.1274955258 sample37 0.1798821395 -0.1673427914 sample38 0.0466306541 0.0888160765 sample39 -0.0168687811 0.0421533809 sample40 0.1756392697 -0.1526642826 sample41 0.0042373054 0.0004928709 sample42 -0.0447849155 -0.0651504919 sample43 0.0482308069 -0.0253529370 sample44 -0.1986717189 -0.0545777311 sample45 -0.0741838307 0.0054703535 sample46 0.0478774171 -0.0007072211 sample47 0.0608189151 0.0481622468 sample48 -0.1381488846 0.0578288087 sample49 -0.0530522932 -0.1405532624 sample50 -0.0173796350 0.1602389595 sample51 0.0462558700 0.0303473816 sample52 0.0280063516 0.0280388382 sample53 0.0667618659 0.0237701990 sample54 0.0121833082 -0.0521354335 sample55 0.0182395860 0.0221328395 sample56 -0.0001256737 0.0030907403 sample57 0.0316673249 0.0530190288 sample58 0.0393917562 -0.0297798818 sample59 0.1278290481 -0.0546528248 sample60 0.1486984654 0.1069156213 sample61 0.0793121304 0.0569796382 sample62 0.1172801470 -0.0149198784 sample63 -0.0028728682 0.1300519927 sample64 0.0237363165 0.1073287730 sample65 -0.0126535084 0.0589808484 sample66 -0.0468195631 -0.0771072550 sample67 0.1494265046 -0.0769860692 sample68 0.0977962567 -0.0577351346 sample69 0.0403087362 0.0156042027 sample70 0.0221532723 0.0315440859 sample71 -0.0546432307 -0.0272396396 sample72 0.1107488092 -0.0537319652 sample73 0.0906761157 0.0579966404 sample74 0.0586554508 0.0121421577 sample75 0.0390493711 0.0349282710 sample76 -0.0022960278 -0.1676558824 sample77 -0.0232096360 -0.2067302754 sample78 -0.0929756175 -0.0434939227 sample79 -0.1619494281 -0.0378113952 sample80 0.0680366144 0.1424663323 sample81 -0.0530782803 -0.0358350768 sample82 0.0266822541 -0.0577445202 sample83 0.1517235340 -0.0448554706 sample84 -0.0570966575 -0.0273813123 sample85 0.1086289293 -0.1228119592 sample86 0.0833860601 -0.0442915215 sample87 0.0022018886 -0.0943906891 sample88 -0.0078226026 -0.1140506489 sample89 0.0611056149 -0.0094585255 sample90 0.0022928377 -0.0936254012 sample91 0.0433594438 0.3205982545 sample92 -0.1815332995 -0.0334679964 sample93 0.0267631251 0.0614428951 sample94 0.0181878275 0.0605090356 sample95 -0.0720374403 -0.0013045529 sample96 -0.0559713877 -0.0118791311 sample97 -0.0217411224 0.0195414218 sample98 0.0379177866 0.0588357005 sample99 -0.0792429044 -0.0151273540 sample100 0.0222116062 -0.0023321472 sample101 -0.0387225511 0.1224226203 sample102 -0.2094614416 -0.0516442103 sample103 0.0138482864 0.0301051858 sample104 -0.0807986176 -0.0162718758 sample105 -0.0520493309 -0.1229665047 sample106 -0.0192613937 -0.0185238118 sample107 0.0319017098 0.0405123224 sample108 -0.0140690638 0.0163421405 sample109 -0.1831928549 0.0613007948 sample110 -0.0292790434 -0.0199849021 sample111 -0.1423250345 0.0327340617 sample112 0.0426332433 -0.0029083528 sample113 -0.0771905107 0.0268733864 sample114 -0.0241639854 -0.0184080413 sample115 -0.1959014322 0.0460131109 sample116 -0.1394475190 -0.0530805515 sample117 -0.1672360730 -0.1386536051 sample118 -0.0448344025 -0.0117621841 sample119 -0.0910382216 0.2217433451 sample120 -0.0331392502 -0.0057274398 sample121 0.0307573620 0.1392506529 sample122 -0.0839782378 -0.0291994165 sample123 0.0239650945 -0.0642163812 sample124 -0.0909151192 0.0130419752 sample125 -0.0065351101 -0.1092631793 sample126 0.0935311003 0.1368283870 sample127 0.0035388270 0.0292755622 sample128 -0.0660296679 0.1018566543 sample129 0.0693639290 -0.0695421940 sample130 0.0008493947 -0.0669704350 sample131 0.0431023746 0.0174064773 sample132 -0.0637041186 0.0029374930 sample133 -0.0289494108 -0.0390818790 sample134 0.0446201691 0.0456334447 sample135 0.0712337123 0.0521634778 sample136 0.0596272025 0.0197299144 sample137 0.0793152470 -0.0380628520 sample138 -0.0973547412 -0.0454218062 sample139 0.0539903873 -0.1534327481 sample140 0.0850827994 0.0955814293 sample141 -0.0192682725 -0.0554449982 sample142 -0.0672262705 -0.0461320726 sample143 -0.0303729915 -0.0519260193 sample144 -0.0089364268 0.0145814929 sample145 -0.0638772255 0.0122258651 sample146 0.0585857744 0.0063083151 sample147 0.0894133619 -0.1124615945 sample148 -0.0216368518 -0.0615967014 sample149 -0.0515418448 -0.0839903469 sample150 0.0568282153 -0.0124469019 sample151 -0.0789531982 -0.0261831007 sample152 -0.0330752184 0.1306443621 sample153 -0.1751934200 0.1497732650 sample154 0.0421425749 -0.0037010358 sample155 0.0680177971 0.0095711047 sample156 0.0388912011 0.1057562845 sample157 0.0314769308 0.0561367354 sample158 0.0329620767 0.0353947237 sample159 -0.0398417554 -0.1007373644 sample160 0.0424938053 0.0108496103 sample161 -0.0888370644 -0.0679699990 sample162 -0.0027477997 0.1237843956 sample163 -0.0126107966 0.0725434491 sample164 -0.0566779814 -0.0458324036 sample165 -0.0315336268 -0.0236362277 sample166 -0.0612059257 -0.0425232843 sample167 0.0142729863 0.0179308245 sample168 -0.0169504358 -0.0769617828 sample169 0.0675079982 0.0131505177 > discoRes@scores$dist[[2]] ## Distinctive scores for Block 2 1 2 sample1 -0.0012329711 1.635717e-01 sample2 -0.0724350140 6.021291e-03 sample3 -0.0188460431 1.080036e-01 sample4 0.0390145219 -3.113884e-04 sample5 0.1774811613 2.996386e-02 sample6 -0.0451444460 3.455860e-02 sample7 -0.0226466185 7.020129e-03 sample8 -0.1033680336 9.856825e-03 sample9 0.1350011783 -8.979099e-02 sample10 0.1259887184 5.097855e-02 sample11 0.0979788417 -7.086536e-02 sample12 -0.0863019143 8.620317e-02 sample13 -0.1381401123 -1.828007e-01 sample14 -0.0615073874 2.642803e-02 sample15 0.0381598996 3.101662e-02 sample16 -0.0048776776 -1.271814e-03 sample17 -0.0788480987 1.547556e-02 sample18 -0.0884188751 3.795486e-02 sample19 0.0703044391 1.084004e-01 sample20 -0.0025585431 -7.975878e-02 sample21 0.0941601563 4.126746e-02 sample22 -0.0550273353 7.806739e-02 sample23 0.0679495233 4.102008e-02 sample24 -0.1310962947 -1.649308e-01 sample25 0.0113585229 4.426864e-02 sample26 -0.1402945982 -2.016540e-02 sample27 0.0261561239 -1.588496e-03 sample28 -0.0724198761 -5.850590e-02 sample29 -0.0330058492 -2.060867e-03 sample30 -0.0228752484 2.015427e-02 sample31 -0.0635067985 6.670335e-02 sample32 0.0685099678 4.955272e-02 sample33 -0.0777765195 1.272078e-01 sample34 0.0157842422 3.024314e-02 sample35 -0.0529632646 -1.500972e-01 sample36 0.0070900927 -2.025308e-01 sample37 -0.0442420383 -1.802089e-01 sample38 -0.0781511238 3.676416e-02 sample39 0.0120331822 3.388843e-02 sample40 -0.0473291872 -1.471562e-01 sample41 0.0228189462 2.673551e-02 sample42 -0.0245360283 7.960867e-02 sample43 0.1036362802 8.229577e-02 sample44 -0.1012228954 -7.049444e-02 sample45 0.0013731929 2.450916e-02 sample46 -0.0558509937 -2.947421e-03 sample47 -0.0380481117 -4.554175e-02 sample48 0.0784342024 -4.888978e-02 sample49 -0.0605164050 1.162359e-02 sample50 0.0530079326 2.737928e-02 sample51 0.1514646517 -5.678343e-02 sample52 0.1860935256 -1.246717e-01 sample53 -0.0064177135 2.700996e-02 sample54 0.0697038333 2.308389e-02 sample55 0.1633577048 -1.366442e-02 sample56 0.1011485084 -4.682203e-02 sample57 0.1730374225 -1.609603e-01 sample58 -0.0071384701 1.666955e-02 sample59 -0.0030461597 -3.005288e-02 sample60 0.0215835303 -2.665878e-01 sample61 0.1510583687 -1.002385e-01 sample62 -0.0925533883 4.845838e-02 sample63 -0.0596311868 4.137025e-02 sample64 -0.0449225830 2.600594e-03 sample65 0.0939383727 4.406910e-02 sample66 0.1063400688 5.709995e-02 sample67 -0.0201589810 -2.361728e-01 sample68 0.0037203320 -2.418394e-02 sample69 -0.0645161218 1.155622e-01 sample70 -0.1013440010 1.351789e-01 sample71 -0.0016467857 2.976839e-02 sample72 0.0328893092 2.835855e-02 sample73 0.0275080071 5.148185e-02 sample74 0.1341719673 7.895280e-02 sample75 0.0951575686 3.943183e-02 sample76 -0.0864721924 -3.034993e-02 sample77 -0.1035749569 2.545353e-02 sample78 -0.1575644214 -4.939590e-02 sample79 0.0189137067 -4.874679e-02 sample80 0.1384140635 -4.267235e-05 sample81 -0.0118846475 6.357931e-02 sample82 -0.1675308128 -3.533913e-02 sample83 -0.0065673333 7.812606e-02 sample84 0.1486891583 3.109058e-02 sample85 -0.0532724321 -7.417888e-02 sample86 -0.1138477269 1.912580e-05 sample87 0.0432864026 -6.080473e-02 sample88 0.0433450390 -1.402490e-01 sample89 0.0331205779 1.395402e-02 sample90 -0.0607412825 8.610413e-02 sample91 -0.0566272483 -1.303748e-01 sample92 -0.0359582510 -1.061604e-01 sample93 -0.0433646357 4.443634e-02 sample94 -0.0477291317 1.059574e-01 sample95 -0.0249595793 3.980525e-02 sample96 0.0035218969 9.293928e-02 sample97 -0.0066048823 1.527231e-01 sample98 0.0020366827 5.579549e-02 sample99 -0.0886616205 3.728231e-02 sample100 -0.1091259141 3.560420e-02 sample101 -0.0739726452 4.317995e-02 sample102 0.0574461014 2.783919e-02 sample103 0.0142731073 -9.705584e-03 sample104 0.0710395200 -4.068350e-02 sample105 0.0980831317 3.452954e-02 sample106 -0.0254259331 -3.628982e-02 sample107 -0.0160653469 9.173395e-02 sample108 -0.0200987669 2.379692e-02 sample109 -0.0389780724 -1.692357e-02 sample110 -0.0326304853 -2.988109e-02 sample111 0.0676937500 6.038214e-02 sample112 0.0167883448 -5.336938e-03 sample113 0.0969216944 2.757606e-02 sample114 -0.0026398354 9.209155e-02 sample115 -0.0308047404 -1.603820e-02 sample116 -0.1240307191 -1.273000e-01 sample117 0.0334729040 -5.392709e-02 sample118 -0.1037152916 -6.252431e-02 sample119 -0.1064176582 -1.196203e-01 sample120 -0.0771355150 1.004933e-01 sample121 -0.0129350773 -3.181974e-02 sample122 0.0847492191 5.568330e-02 sample123 -0.0041336744 -7.693192e-03 sample124 -0.0583458099 8.396392e-02 sample125 0.0634844581 5.232541e-02 sample126 -0.0662580959 1.091732e-01 sample127 -0.0865024630 1.094176e-01 sample128 -0.0627817526 1.470968e-02 sample129 -0.0336276399 4.007856e-02 sample130 -0.0293517754 8.046116e-02 sample131 -0.0469197645 2.209739e-03 sample132 -0.0241740785 1.248599e-01 sample133 0.0907303219 -1.466701e-02 sample134 -0.0350842061 -7.539662e-02 sample135 0.0001333449 -9.185393e-03 sample136 -0.0335876030 9.860271e-02 sample137 -0.0640148867 7.554467e-02 sample138 0.0060964808 1.742763e-02 sample139 -0.0592084415 -5.614970e-02 sample140 0.0427985990 1.099548e-02 sample141 0.0618796326 9.301040e-02 sample142 0.0898554425 -3.573415e-02 sample143 0.0817389245 -8.880524e-02 sample144 0.0787754772 3.821391e-02 sample145 0.1085821534 -1.569476e-01 sample146 -0.0589557882 4.373356e-02 sample147 -0.0495330371 -7.277228e-03 sample148 0.1161592749 -9.079055e-03 sample149 -0.0121579396 -7.788377e-02 sample150 -0.0314512520 -3.520213e-02 sample151 0.0575382133 1.945353e-02 sample152 -0.0494542078 -7.025538e-02 sample153 -0.0941332870 -2.153296e-01 sample154 -0.0335931942 -2.078732e-02 sample155 0.0690457690 2.780408e-02 sample156 0.1039901636 6.292523e-02 sample157 -0.0408645774 -8.065515e-03 sample158 0.1018105332 -7.816883e-03 sample159 -0.0281730580 1.207208e-02 sample160 0.1643053018 -2.978099e-03 sample161 0.0374329251 -8.524610e-02 sample162 -0.0804535369 -8.349751e-02 sample163 -0.0743228059 1.406229e-02 sample164 0.1208805972 2.139462e-02 sample165 0.1608115910 -2.025191e-02 sample166 -0.0425944709 2.660717e-02 sample167 -0.0226849485 4.464281e-02 sample168 -0.0180735611 7.466373e-04 sample169 0.0190779043 -2.645403e-02 > # Exploring O2PLS scores structure > o2plsRes@scores$common[[1]] ## Common scores for Block 1 [,1] [,2] sample1 -0.0572060227 -1.729087e-02 sample2 0.0875245208 1.112588e-02 sample3 0.0403482602 -3.168994e-02 sample4 -0.0218345996 4.052760e-06 sample5 -0.0150905011 4.795041e-03 sample6 -0.0924362933 4.511003e-02 sample7 -0.0793066751 -1.243823e-02 sample8 -0.1342997187 6.215220e-02 sample9 -0.0338886944 -1.854401e-02 sample10 0.0020547173 1.749421e-02 sample11 0.0037275602 -2.364116e-02 sample12 -0.0753094533 2.772698e-02 sample13 0.0856160091 3.679963e-02 sample14 -0.0737457307 2.668452e-02 sample15 -0.0062111746 -3.554864e-03 sample16 -0.0602355268 6.675115e-02 sample17 0.1086768843 2.524534e-02 sample18 0.0702999472 2.231671e-02 sample19 0.0173785882 -3.024846e-02 sample20 0.0484173812 -3.310904e-02 sample21 0.0124657042 6.517144e-02 sample22 -0.0140989936 -3.159137e-02 sample23 -0.0627028403 -5.393710e-04 sample24 0.0919972100 7.909297e-02 sample25 0.0326998483 -1.945206e-02 sample26 0.1064741246 2.120849e-02 sample27 0.0166058995 -4.964993e-02 sample28 0.0743504770 2.614211e-02 sample29 -0.0511008491 -2.782647e-02 sample30 0.0962250842 -3.974893e-03 sample31 -0.0869563008 5.250819e-02 sample32 0.0271858919 1.552005e-02 sample33 -0.0448364581 6.243160e-03 sample34 0.0718415218 1.469396e-02 sample35 0.0403086451 -1.632629e-02 sample36 -0.1036402827 -1.304320e-02 sample37 -0.0159385744 -3.036525e-02 sample38 0.0182198369 -4.034805e-02 sample39 0.0690363619 8.058350e-03 sample40 -0.0467312750 -2.810325e-02 sample41 0.0263674438 -5.171216e-02 sample42 0.0374578960 -1.268634e-02 sample43 0.0132336869 9.536642e-03 sample44 -0.1119154428 5.028683e-02 sample45 0.0759639367 4.587903e-02 sample46 0.0871885519 -4.670385e-02 sample47 0.0721490571 -1.288540e-02 sample48 0.0005086144 -1.290565e-02 sample49 -0.0858177028 5.173760e-02 sample50 0.0118992665 -7.276215e-02 sample51 -0.0426446855 5.306205e-02 sample52 -0.0381605826 3.086785e-02 sample53 -0.0855757630 6.730043e-02 sample54 0.0261723092 9.184260e-03 sample55 -0.0156418304 4.682404e-04 sample56 0.0307831193 2.597550e-02 sample57 -0.0157242103 4.829381e-02 sample58 -0.0031174404 1.359898e-02 sample59 -0.0373001859 5.868397e-03 sample60 -0.0142609099 5.831654e-03 sample61 -0.0122255144 2.663579e-02 sample62 0.0228002942 -8.692265e-03 sample63 -0.0833127581 5.473229e-02 sample64 -0.1166548159 4.196500e-02 sample65 0.0038808902 8.568590e-03 sample66 0.0011561811 1.766612e-02 sample67 -0.1129311062 -2.608702e-02 sample68 -0.0382526429 -3.804045e-02 sample69 -0.0476502440 4.003241e-03 sample70 -0.0110329882 -2.752719e-02 sample71 0.0096850282 -5.627056e-02 sample72 0.0487124704 -8.800131e-03 sample73 0.0773058132 8.239864e-03 sample74 -0.0102488176 2.454957e-02 sample75 -0.0286613976 -8.387293e-03 sample76 -0.0472655595 -2.129315e-02 sample77 -0.0865043074 -7.296820e-03 sample78 0.1070293698 2.818346e-02 sample79 -0.0165060681 -6.659721e-02 sample80 -0.0206765949 -8.712112e-03 sample81 -0.0050943615 -3.079175e-02 sample82 0.1153622361 -1.647054e-02 sample83 0.0367979217 -2.538114e-03 sample84 0.0199463070 -1.468961e-02 sample85 -0.0827122185 -2.709824e-04 sample86 0.0969487314 -1.699897e-02 sample87 0.0421957457 -1.965953e-02 sample88 0.0215934743 1.566050e-02 sample89 0.0751559502 2.811652e-02 sample90 -0.0057328000 -8.283795e-03 sample91 -0.1134005268 -8.603522e-02 sample92 -0.0101689918 -6.894992e-02 sample93 0.0725967502 -6.003176e-03 sample94 -0.0096878852 -4.693081e-03 sample95 -0.0223502239 -3.139636e-02 sample96 -0.0013232863 -1.963604e-02 sample97 -0.0476541710 1.183660e-02 sample98 0.0269546160 -5.978398e-03 sample99 0.0728179461 4.597884e-02 sample100 -0.0413398038 1.079347e-02 sample101 0.0087536994 -6.796076e-02 sample102 0.0032509529 3.932612e-03 sample103 0.0360342395 -3.973263e-02 sample104 -0.0141722563 -2.453107e-02 sample105 0.0294940465 -7.140722e-03 sample106 0.0686472054 1.462895e-02 sample107 0.0748635927 8.401339e-03 sample108 0.0650175850 -6.211942e-03 sample109 -0.0628017242 -3.681224e-02 sample110 0.0905513691 -5.169053e-03 sample111 -0.0176679473 -3.884777e-02 sample112 0.0570870472 1.066018e-02 sample113 -0.0200110554 1.596044e-02 sample114 -0.0001474542 -3.679272e-02 sample115 -0.0213333038 -2.991667e-02 sample116 -0.0567675453 -2.785636e-02 sample117 -0.0379865990 -3.752078e-02 sample118 -0.0484878786 -9.173691e-03 sample119 -0.0713511831 -9.598634e-02 sample120 -0.0555093586 1.089843e-02 sample121 0.0542443861 3.861344e-02 sample122 0.0178575357 3.027138e-02 sample123 0.0775020581 -1.636852e-02 sample124 -0.0460701050 1.814758e-02 sample125 0.0543846585 2.075898e-03 sample126 -0.0729417144 3.276659e-02 sample127 -0.0609509157 -3.270814e-03 sample128 0.0908136899 3.758801e-02 sample129 0.0552445878 -1.879062e-02 sample130 0.0007128089 -1.294308e-02 sample131 -0.0693311345 7.357082e-03 sample132 -0.0556565156 3.126995e-02 sample133 0.0375870104 -1.977240e-02 sample134 -0.1229130924 3.159495e-02 sample135 0.0555550315 -5.563250e-04 sample136 -0.0159768414 -2.046339e-02 sample137 -0.0412337694 -1.151652e-02 sample138 -0.0180604476 -2.526505e-02 sample139 -0.0465649201 1.040683e-02 sample140 0.0452288969 -1.876279e-02 sample141 -0.0189142561 2.247042e-02 sample142 0.0297545566 1.280524e-02 sample143 0.0064292003 -1.997706e-02 sample144 -0.0124284903 -6.369733e-03 sample145 -0.0377141491 5.066743e-02 sample146 -0.0296240067 -3.344465e-02 sample147 0.0726083535 -1.239968e-02 sample148 -0.0284795794 3.389732e-02 sample149 0.0082261455 -6.399305e-02 sample150 -0.0765013197 2.704021e-02 sample151 -0.0220567356 -1.178159e-02 sample152 0.0403422737 -2.714879e-02 sample153 0.0629117719 7.425085e-02 sample154 0.0551622927 -3.548984e-02 sample155 0.0654439133 -1.005306e-02 sample156 0.0209310714 -1.390213e-02 sample157 0.0851522597 6.577150e-03 sample158 0.0208354599 -4.663078e-03 sample159 -0.0498794349 1.913257e-02 sample160 0.0216074437 1.656579e-02 sample161 -0.0075742328 -2.455676e-02 sample162 0.0963663017 5.705881e-02 sample163 -0.1009542191 7.174224e-02 sample164 0.0109881996 1.026806e-03 sample165 -0.0053146157 -6.772855e-03 sample166 -0.0275757357 2.673084e-02 sample167 -0.0825048036 2.278863e-03 sample168 0.0486147429 1.793843e-02 sample169 0.0302506727 8.984253e-03 > o2plsRes@scores$common[[2]] ## Common scores for Block 2 [,1] [,2] sample1 -0.0621842115 -1.364509e-02 sample2 0.0944623785 9.720892e-03 sample3 0.0406196267 -2.236338e-02 sample4 -0.0229316496 -3.932487e-04 sample5 -0.0157330047 3.231033e-03 sample6 -0.0945794025 3.120720e-02 sample7 -0.0854427118 -1.052880e-02 sample8 -0.1376625920 4.286608e-02 sample9 -0.0377115311 -1.415134e-02 sample10 0.0035244506 1.280825e-02 sample11 0.0016639987 -1.717895e-02 sample12 -0.0781403168 1.884368e-02 sample13 0.0938400516 2.838858e-02 sample14 -0.0759839772 1.810989e-02 sample15 -0.0068340837 -2.705361e-03 sample16 -0.0590150849 4.757848e-02 sample17 0.1178805097 2.040526e-02 sample18 0.0767858320 1.756604e-02 sample19 0.0157112113 -2.172867e-02 sample20 0.0485318300 -2.327033e-02 sample21 0.0185928176 4.777095e-02 sample22 -0.0191358702 -2.329775e-02 sample23 -0.0672994194 -1.535656e-03 sample24 0.1047476642 5.935707e-02 sample25 0.0329844953 -1.358036e-02 sample26 0.1154952052 1.741529e-02 sample27 0.0133849853 -3.590922e-02 sample28 0.0821554039 2.042376e-02 sample29 -0.0567643690 -2.123848e-02 sample30 0.1016073931 -1.134728e-03 sample31 -0.0880396372 3.670548e-02 sample32 0.0300363338 1.182406e-02 sample33 -0.0467252272 3.739254e-03 sample34 0.0783666394 1.203777e-02 sample35 0.0424227097 -1.118559e-02 sample36 -0.1107646166 -1.143464e-02 sample37 -0.0191667664 -2.246060e-02 sample38 0.0155968095 -2.909621e-02 sample39 0.0746847148 7.148218e-03 sample40 -0.0517028178 -2.137267e-02 sample41 0.0234979494 -3.723018e-02 sample42 0.0388797356 -8.557228e-03 sample43 0.0149555568 7.210002e-03 sample44 -0.1150305613 3.461805e-02 sample45 0.0846146236 3.486020e-02 sample46 0.0884426404 -3.246853e-02 sample47 0.0748644971 -8.083045e-03 sample48 -0.0012033198 -9.403647e-03 sample49 -0.0872662737 3.616245e-02 sample50 0.0066941314 -5.284863e-02 sample51 -0.0411777630 3.791830e-02 sample52 -0.0379355780 2.180834e-02 sample53 -0.0851639886 4.751761e-02 sample54 0.0288006248 7.184424e-03 sample55 -0.0164920835 5.919925e-05 sample56 0.0355115616 1.951043e-02 sample57 -0.0141146068 3.492409e-02 sample58 -0.0015636132 9.862883e-03 sample59 -0.0390656483 3.590929e-03 sample60 -0.0139454780 3.963030e-03 sample61 -0.0106410274 1.919705e-02 sample62 0.0236748439 -5.922677e-03 sample63 -0.0846790877 3.839102e-02 sample64 -0.1202581015 2.846469e-02 sample65 0.0050548584 6.328644e-03 sample66 0.0028013072 1.291807e-02 sample67 -0.1231623009 -2.112565e-02 sample68 -0.0437782161 -2.845072e-02 sample69 -0.0501199692 2.053469e-03 sample70 -0.0140278645 -2.027157e-02 sample71 0.0057489505 -4.085977e-02 sample72 0.0511212704 -5.522408e-03 sample73 0.0828141409 7.431582e-03 sample74 -0.0085959456 1.772951e-02 sample75 -0.0312180394 -6.636869e-03 sample76 -0.0519051781 -1.640191e-02 sample77 -0.0925924762 -6.907800e-03 sample78 0.1163971046 2.251122e-02 sample79 -0.0240906926 -4.887766e-02 sample80 -0.0221327065 -6.730703e-03 sample81 -0.0072114968 -2.254399e-02 sample82 0.1204416674 -9.907422e-03 sample83 0.0386739485 -1.171663e-03 sample84 0.0195988488 -1.033806e-02 sample85 -0.0877680171 -1.725057e-03 sample86 0.1023541048 -1.062501e-02 sample87 0.0425213089 -1.356865e-02 sample88 0.0244788514 1.180820e-02 sample89 0.0804276691 2.188588e-02 sample90 -0.0074639871 -6.140721e-03 sample91 -0.1278832404 -6.485140e-02 sample92 -0.0162199697 -5.048358e-02 sample93 0.0769344893 -3.045135e-03 sample94 -0.0104345587 -3.593172e-03 sample95 -0.0260058453 -2.330475e-02 sample96 -0.0025018700 -1.433516e-02 sample97 -0.0492358305 7.774183e-03 sample98 0.0279220220 -3.862141e-03 sample99 0.0813921923 3.487339e-02 sample100 -0.0428797405 7.112807e-03 sample101 0.0032855240 -4.940743e-02 sample102 0.0038439317 2.938008e-03 sample103 0.0358511139 -2.831881e-02 sample104 -0.0162784000 -1.815061e-02 sample105 0.0314853405 -4.656633e-03 sample106 0.0726456731 1.192390e-02 sample107 0.0807342975 7.508627e-03 sample108 0.0688338003 -3.336161e-03 sample109 -0.0694151950 -2.800146e-02 sample110 0.0961218924 -2.111997e-03 sample111 -0.0217900036 -2.864702e-02 sample112 0.0599954082 8.820317e-03 sample113 -0.0195006577 1.128215e-02 sample114 -0.0032126533 -2.682851e-02 sample115 -0.0251101087 -2.221077e-02 sample116 -0.0625141551 -2.137258e-02 sample117 -0.0440473375 -2.806256e-02 sample118 -0.0532042630 -7.590494e-03 sample119 -0.0848603028 -7.133574e-02 sample120 -0.0588832131 6.937326e-03 sample121 0.0613899126 2.915307e-02 sample122 0.0218424338 2.241775e-02 sample123 0.0809008460 -1.051759e-02 sample124 -0.0472109313 1.239887e-02 sample125 0.0583180947 2.521167e-03 sample126 -0.0753941872 2.256455e-02 sample127 -0.0649774209 -3.496964e-03 sample128 0.1000212216 2.908091e-02 sample129 0.0568033049 -1.269016e-02 sample130 -0.0002370832 -9.419675e-03 sample131 -0.0727030877 4.091672e-03 sample132 -0.0566219024 2.179861e-02 sample133 0.0384172955 -1.372840e-02 sample134 -0.1280862736 2.077912e-02 sample135 0.0592633273 6.106685e-04 sample136 -0.0187635410 -1.521173e-02 sample137 -0.0449958970 -9.152840e-03 sample138 -0.0211348699 -1.875415e-02 sample139 -0.0482882861 6.729304e-03 sample140 0.0468926306 -1.285498e-02 sample141 -0.0186248693 1.605439e-02 sample142 0.0328031246 9.887746e-03 sample143 0.0052919839 -1.445666e-02 sample144 -0.0140067923 -4.867248e-03 sample145 -0.0361804310 3.625323e-02 sample146 -0.0345286735 -2.493652e-02 sample147 0.0765025670 -7.714769e-03 sample148 -0.0276016641 2.420589e-02 sample149 0.0027545308 -4.653007e-02 sample150 -0.0792296010 1.831289e-02 sample151 -0.0245894512 -8.991738e-03 sample152 0.0409796547 -1.907063e-02 sample153 0.0734301757 5.528780e-02 sample154 0.0557740684 -2.487723e-02 sample155 0.0689436560 -6.127635e-03 sample156 0.0212272938 -9.747423e-03 sample157 0.0911931194 6.355708e-03 sample158 0.0220840645 -3.016357e-03 sample159 -0.0513244242 1.304175e-02 sample160 0.0246213576 1.248444e-02 sample161 -0.0100369130 -1.805391e-02 sample162 0.1078802043 4.337260e-02 sample163 -0.1017965082 5.047171e-02 sample164 0.0119430799 9.593002e-04 sample165 -0.0063708014 -5.032148e-03 sample166 -0.0283181180 1.899222e-02 sample167 -0.0872832229 1.516582e-04 sample168 0.0540714512 1.397701e-02 sample169 0.0328432652 7.104347e-03 > o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1 [,1] [,2] sample1 0.0133684846 2.195848e-02 sample2 0.0254157197 -1.058416e-02 sample3 -0.0049551479 -4.840017e-03 sample4 0.0310390570 -1.063929e-02 sample5 0.0046941318 -6.488426e-03 sample6 -0.0107406753 -1.026702e-02 sample7 -0.0225157631 2.624712e-04 sample8 0.0141320952 -9.505821e-03 sample9 0.0029681280 2.078210e-02 sample10 0.0131729174 -2.275042e-03 sample11 -0.0004164298 1.994019e-02 sample12 -0.0095211620 3.759883e-02 sample13 0.0091018604 -7.953956e-03 sample14 -0.0106557524 -9.181659e-03 sample15 -0.0249924121 3.262724e-02 sample16 -0.0156216400 1.375700e-02 sample17 -0.0019382446 1.073994e-03 sample18 -0.0221072481 -8.703592e-03 sample19 0.0146917619 -1.311712e-02 sample20 -0.0160353760 1.826290e-02 sample21 0.0035947899 -9.616341e-03 sample22 -0.0225060762 -2.532589e-03 sample23 0.0310000683 3.033060e-03 sample24 0.0499544372 1.809450e-02 sample25 0.0284442301 -1.932558e-02 sample26 0.0188220043 2.146985e-02 sample27 -0.0257763219 -1.999228e-03 sample28 0.0120888648 1.125834e-02 sample29 -0.0236482520 4.426726e-02 sample30 -0.0385486305 -2.055935e-02 sample31 -0.0181539336 -5.877838e-03 sample32 -0.0302630460 -2.607192e-03 sample33 -0.0319565715 -1.562628e-02 sample34 -0.0197970124 9.906813e-03 sample35 -0.0247412713 -5.434440e-03 sample36 -0.0386259060 -3.190394e-02 sample37 -0.0566199273 -4.192574e-02 sample38 -0.0142060273 2.259644e-02 sample39 0.0053589035 1.076485e-02 sample40 -0.0552546493 -3.819896e-02 sample41 -0.0013089975 9.278818e-05 sample42 0.0137252142 -1.664652e-02 sample43 -0.0151259626 -6.290953e-03 sample44 0.0617391754 -1.442883e-02 sample45 0.0231410886 1.163143e-03 sample46 -0.0148898209 -1.384176e-04 sample47 -0.0187252536 1.221690e-02 sample48 0.0432839432 1.416671e-02 sample49 0.0160818605 -3.588745e-02 sample50 0.0059333545 4.067003e-02 sample51 -0.0142914866 7.776270e-03 sample52 -0.0086339952 7.208917e-03 sample53 -0.0207386980 6.272432e-03 sample54 -0.0039856719 -1.316934e-02 sample55 -0.0056217017 5.692315e-03 sample56 0.0000123292 8.978290e-04 sample57 -0.0095805555 1.324253e-02 sample58 -0.0124160295 -7.326376e-03 sample59 -0.0400195442 -1.349736e-02 sample60 -0.0460063358 2.770091e-02 sample61 -0.0245266456 1.470710e-02 sample62 -0.0366022783 -3.437352e-03 sample63 0.0013742171 3.288796e-02 sample64 -0.0070599859 2.739588e-02 sample65 0.0041201911 1.498268e-02 sample66 0.0143173351 -1.968812e-02 sample67 -0.0467477531 -1.929938e-02 sample68 -0.0306751978 -1.436184e-02 sample69 -0.0125317217 4.130407e-03 sample70 -0.0068071487 8.080857e-03 sample71 0.0169170264 -7.027348e-03 sample72 -0.0346909749 -1.333770e-02 sample73 -0.0280506153 1.493843e-02 sample74 -0.0182611498 3.294697e-03 sample75 -0.0120563964 8.974612e-03 sample76 0.0001437236 -4.253184e-02 sample77 0.0065330299 -5.252886e-02 sample78 0.0288278141 -1.127782e-02 sample79 0.0503961481 -1.023318e-02 sample80 -0.0207693429 3.648391e-02 sample81 0.0163562768 -9.074596e-03 sample82 -0.0084317129 -1.478976e-02 sample83 -0.0474097918 -1.103126e-02 sample84 0.0177181395 -7.191197e-03 sample85 -0.0342718548 -3.082360e-02 sample86 -0.0261671791 -1.089491e-02 sample87 -0.0009486358 -2.411514e-02 sample88 0.0020528931 -2.894615e-02 sample89 -0.0189361111 -2.638639e-03 sample90 -0.0009863658 -2.390075e-02 sample91 -0.0124352695 8.153234e-02 sample92 0.0564264106 -8.909537e-03 sample93 -0.0081461774 1.570851e-02 sample94 -0.0054896581 1.547251e-02 sample95 0.0224073150 -4.374348e-04 sample96 0.0173528924 -3.050441e-03 sample97 0.0067948115 5.008237e-03 sample98 -0.0116030825 1.498764e-02 sample99 0.0246422688 -4.054795e-03 sample100 -0.0069420745 -4.846343e-04 sample101 0.0124923691 3.091503e-02 sample102 0.0650835386 -1.367400e-02 sample103 -0.0042741828 7.855985e-03 sample104 0.0250591040 -4.171938e-03 sample105 0.0157516368 -3.121990e-02 sample106 0.0060593853 -5.101693e-03 sample107 -0.0098329626 1.044506e-02 sample108 0.0044269853 4.142036e-03 sample109 0.0572473486 1.517542e-02 sample110 0.0090474827 -5.119868e-03 sample111 0.0444263015 7.983232e-03 sample112 -0.0131765484 -9.696342e-04 sample113 0.0241047399 6.706740e-03 sample114 0.0074558775 -4.728652e-03 sample115 0.0611851433 1.117210e-02 sample116 0.0432646951 -1.380556e-02 sample117 0.0516750066 -3.575617e-02 sample118 0.0139942100 -3.279138e-03 sample119 0.0291722987 5.587946e-02 sample120 0.0103515853 -1.690016e-03 sample121 -0.0091396331 3.552116e-02 sample122 0.0260431679 -7.583975e-03 sample123 -0.0076666389 -1.628489e-02 sample124 0.0283466326 3.127845e-03 sample125 0.0016472378 -2.770692e-02 sample126 -0.0286529417 3.489336e-02 sample127 -0.0010224500 7.483214e-03 sample128 0.0209049296 2.572016e-02 sample129 -0.0218184878 -1.755347e-02 sample130 -0.0005009620 -1.697978e-02 sample131 -0.0134032968 4.637390e-03 sample132 0.0198526786 5.723983e-04 sample133 0.0088812957 -9.988115e-03 sample134 -0.0137484514 1.172591e-02 sample135 -0.0220314568 1.347465e-02 sample136 -0.0185173353 5.168079e-03 sample137 -0.0248352123 -9.472788e-03 sample138 0.0301635767 -1.175283e-02 sample139 -0.0173576929 -3.872592e-02 sample140 -0.0262157762 2.456863e-02 sample141 0.0058369763 -1.420854e-02 sample142 0.0207886071 -1.188764e-02 sample143 0.0092832598 -1.324238e-02 sample144 0.0028442140 3.627979e-03 sample145 0.0199749569 2.862202e-03 sample146 -0.0182236697 1.726556e-03 sample147 -0.0282519995 -2.825595e-02 sample148 0.0065435868 -1.572917e-02 sample149 0.0158233820 -2.159451e-02 sample150 -0.0177383738 -3.020633e-03 sample151 0.0245166984 -6.888241e-03 sample152 0.0107259913 3.314630e-02 sample153 0.0550963965 3.758760e-02 sample154 -0.0131452472 -8.153903e-04 sample155 -0.0211742574 2.642246e-03 sample156 -0.0117803505 2.698265e-02 sample157 -0.0096167165 1.433840e-02 sample158 -0.0101754772 9.137620e-03 sample159 0.0120662931 -2.565236e-02 sample160 -0.0132238202 2.916023e-03 sample161 0.0274491966 -1.748284e-02 sample162 0.0012482909 3.152261e-02 sample163 0.0042031315 1.830701e-02 sample164 0.0174896157 -1.175915e-02 sample165 0.0097517662 -6.119019e-03 sample166 0.0190134679 -1.121582e-02 sample167 -0.0044140836 4.665585e-03 sample168 0.0049689168 -1.941822e-02 sample169 -0.0209802098 3.498729e-03 > o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2 [,1] [,2] sample1 -0.0515543627 -0.0305856787 sample2 -0.0144993256 0.0236342950 sample3 -0.0371833108 -0.0140263348 sample4 0.0068945388 -0.0132539692 sample5 0.0215035333 -0.0663338101 sample6 -0.0187055152 0.0088773016 sample7 -0.0061521552 0.0064029054 sample8 -0.0210874459 0.0334652901 sample9 0.0516865043 -0.0291142799 sample10 0.0059440366 -0.0527217447 sample11 0.0393010793 -0.0200624712 sample12 -0.0420837100 0.0131331362 sample13 0.0333252565 0.0818552509 sample14 -0.0190062644 0.0160202175 sample15 -0.0030968049 -0.0189230681 sample16 -0.0004452158 0.0018880102 sample17 -0.0185848615 0.0240170131 sample18 -0.0273093598 0.0230213640 sample19 -0.0217761111 -0.0445894441 sample20 0.0245820821 0.0159812738 sample21 0.0034527644 -0.0400016054 sample22 -0.0340789054 0.0039289109 sample23 -0.0010344929 -0.0310161212 sample24 0.0289468503 0.0760962436 sample25 -0.0119098496 -0.0122798760 sample26 -0.0181001057 0.0517892852 sample27 0.0050465417 -0.0086515844 sample28 0.0057491502 0.0358830107 sample29 -0.0051104246 0.0116605117 sample30 -0.0103085904 0.0039678538 sample31 -0.0319929858 0.0090606113 sample32 -0.0036232521 -0.0328202010 sample33 -0.0534742153 0.0024751837 sample34 -0.0067495749 -0.0111000311 sample35 0.0378745721 0.0465929296 sample36 0.0647886800 0.0359987924 sample37 0.0488441236 0.0492906912 sample38 -0.0251514062 0.0197110110 sample39 -0.0085428066 -0.0105117852 sample40 0.0379324087 0.0440810741 sample41 -0.0044199152 -0.0128820644 sample42 -0.0292553573 -0.0067045265 sample43 -0.0077829155 -0.0510178219 sample44 0.0045122248 0.0479660309 sample45 -0.0074444298 -0.0051116726 sample46 -0.0088025512 0.0196186661 sample47 0.0076696301 0.0215947965 sample48 0.0290108585 -0.0175568376 sample49 -0.0141754858 0.0184717099 sample50 0.0006282201 -0.0233054373 sample51 0.0441995177 -0.0410022921 sample52 0.0715329391 -0.0399499475 sample53 -0.0095954087 -0.0029140909 sample54 0.0048933768 -0.0281884386 sample55 0.0327325487 -0.0532290012 sample56 0.0323068984 -0.0256595538 sample57 0.0806603122 -0.0286748097 sample58 -0.0064792049 -0.0006945349 sample59 0.0088958941 0.0067389649 sample60 0.0874124612 0.0431964341 sample61 0.0577604571 -0.0326112099 sample62 -0.0313318464 0.0224391756 sample63 -0.0233625220 0.0125110562 sample64 -0.0086426068 0.0148770341 sample65 0.0025256193 -0.0404466327 sample66 0.0006014071 -0.0471576264 sample67 0.0706087042 0.0516228406 sample68 0.0082301011 0.0033109509 sample69 -0.0475076743 0.0001452708 sample70 -0.0600773716 0.0089986962 sample71 -0.0096321627 -0.0050761187 sample72 -0.0031773546 -0.0166221542 sample73 -0.0113700517 -0.0191726684 sample74 -0.0014179662 -0.0608101325 sample75 0.0041911740 -0.0399981269 sample76 -0.0055326449 0.0353114263 sample77 -0.0260214459 0.0305731380 sample78 -0.0119267436 0.0632236007 sample79 0.0186017239 0.0027402910 sample80 0.0241047889 -0.0472697181 sample81 -0.0220288317 -0.0079577210 sample82 -0.0180751258 0.0639051029 sample83 -0.0256671713 -0.0125898269 sample84 0.0161392598 -0.0567222449 sample85 0.0139988188 0.0322763454 sample86 -0.0198382995 0.0389225776 sample87 0.0266270281 -0.0032979996 sample88 0.0515677078 0.0117902495 sample89 0.0014022125 -0.0140510488 sample90 -0.0375949749 0.0044004551 sample91 0.0310397965 0.0440610926 sample92 0.0270570567 0.0324380452 sample93 -0.0215009202 0.0063993941 sample94 -0.0415702912 -0.0037692077 sample95 -0.0168416047 0.0010019120 sample96 -0.0285582661 -0.0187991000 sample97 -0.0490843868 -0.0266760748 sample98 -0.0171579033 -0.0112897471 sample99 -0.0271316525 0.0232395583 sample100 -0.0301789816 0.0305498693 sample101 -0.0264371151 0.0170723968 sample102 0.0012767734 -0.0248949597 sample103 0.0055214687 -0.0030040587 sample104 0.0251346074 -0.0165212671 sample105 0.0062424215 -0.0400309901 sample106 0.0069768684 0.0154982315 sample107 -0.0315912602 -0.0118883820 sample108 -0.0109690679 0.0023637162 sample109 -0.0014762845 0.0165583675 sample110 0.0036971063 0.0168260726 sample111 -0.0071624739 -0.0345651461 sample112 0.0046098120 -0.0048009350 sample113 0.0082236008 -0.0383233357 sample114 -0.0293642209 -0.0165595240 sample115 -0.0003260453 0.0135805368 sample116 0.0183575759 0.0665377581 sample117 0.0227640036 -0.0012287760 sample118 0.0015695248 0.0472617382 sample119 0.0190084932 0.0590034062 sample120 -0.0449645755 0.0072755697 sample121 0.0077307184 0.0104738937 sample122 -0.0027132063 -0.0394983138 sample123 0.0016959300 0.0028593594 sample124 -0.0365091615 0.0040382925 sample125 -0.0053658663 -0.0316029164 sample126 -0.0458032408 0.0019165544 sample127 -0.0494064872 0.0088209044 sample128 -0.0155454766 0.0186819802 sample129 -0.0184340400 0.0038684312 sample130 -0.0303640987 -0.0052225766 sample131 -0.0088697422 0.0156339713 sample132 -0.0433916471 -0.0154075483 sample133 0.0204029276 -0.0282209049 sample134 0.0175513332 0.0262883962 sample135 0.0029009925 0.0017003151 sample136 -0.0367997573 -0.0072249751 sample137 -0.0348600323 0.0075400273 sample138 -0.0044063824 -0.0053752428 sample139 0.0073103935 0.0308956174 sample140 0.0039925654 -0.0167019605 sample141 -0.0184093462 -0.0387953445 sample142 0.0268670676 -0.0239229634 sample143 0.0421049126 -0.0110888235 sample144 0.0017253664 -0.0341766012 sample145 0.0681741320 -0.0073526377 sample146 -0.0239965222 0.0118396767 sample147 -0.0063453522 0.0183130585 sample148 0.0230825251 -0.0379753037 sample149 0.0223298673 0.0188909118 sample150 0.0055709108 0.0174179009 sample151 0.0039177786 -0.0233533275 sample152 0.0134325667 0.0302344591 sample153 0.0511990309 0.0730230140 sample154 0.0006698324 0.0154177486 sample155 0.0032926626 -0.0288651601 sample156 -0.0016463495 -0.0474657733 sample157 -0.0045857599 0.0154934573 sample158 0.0201775524 -0.0332982124 sample159 -0.0086909001 0.0073496711 sample160 0.0295437331 -0.0555734536 sample161 0.0332754288 0.0033779619 sample162 0.0121954537 0.0433540412 sample163 -0.0173490933 0.0227219128 sample164 0.0143374783 -0.0453542590 sample165 0.0343612593 -0.0511194536 sample166 -0.0157536004 0.0094621170 sample167 -0.0179654624 -0.0006982358 sample168 -0.0033829919 0.0060747155 sample169 0.0116231468 -0.0015112800 > > ## 3.3 Plotting VAF > > # DISCO-SCA plotVAF > plotVAF(discoRes) > > # JIVE plotVAF > plotVAF(jiveRes) > > > ######################### > ## PART 4. Plot Results > > # Scores for common part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. JIVE > plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. O2PLS. > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common part. O2PLS. > plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common", + combined=TRUE,block="",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Combined plot of scores for common part. DISCO. > plotRes(object=discoRes,comps=c(1,1),what="scores",type="common", + combined=TRUE,block="",color="classname") Warning message: In plotRes(object = discoRes, comps = c(1, 1), what = "scores", : It is not possible to combine common components in DISCO-SCA approach. > > > # Scores for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for distinctive part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual", + combined=TRUE,block="",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block) > p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=TRUE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=TRUE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=TRUE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=TRUE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Loadings for common part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > # Combined plot for loadings for common part. DISCO-SCA. > plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=TRUE,block="",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Loadings for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > # Combined plot for loadings for distinctive part > plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=TRUE,block="",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Combined plot for common and distinctive part (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=TRUE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=TRUE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > ######################### > ## PART 5. Biplot results > > ## Common components DISCO-SCA > biplotRes(object=discoRes,type="common",comps=c(1,2),block="",title=NULL, + colorCol="classname",sizeValues=c(2,4),shapeValues=c(17,0), + background=TRUE,pointSize=4,labelSize=NULL,axisSize=NULL, + titleSize=NULL) > > > ## Common components O2PLS > p1 <- biplotRes(object=o2plsRes,type="common",comps=c(1,2),block="expr",title=NULL, + colorCol="classname",sizeValues=c(2,4),shapeValues=c(17,0), + background=TRUE,pointSize=4,labelSize=NULL,axisSize=NULL, + titleSize=NULL) Warning message: In data.row.names(row.names, rowsi, i) : some row.names duplicated: 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338 --> row.names NOT used > p2 <- biplotRes(object=o2plsRes,type="common",comps=c(1,2),block="mirna",title=NULL, + colorCol="classname",sizeValues=c(2,4),shapeValues=c(17,0), + background=TRUE,pointSize=4,labelSize=NULL,axisSize=NULL,titleSize=NULL) Warning message: In data.row.names(row.names, rowsi, i) : some row.names duplicated: 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338 --> row.names NOT used > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > ## Distintive components DISCO-SCA > p1 <- biplotRes(object=discoRes,type="individual",comps=c(1,2),block="expr",title=NULL, + colorCol="classname",sizeValues=c(2,4),shapeValues=c(17,0), + background=TRUE,pointSize=4,labelSize=NULL,axisSize=NULL, + titleSize=NULL) Warning message: In data.row.names(row.names, rowsi, i) : some row.names duplicated: 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338 --> row.names NOT used > p2 <- biplotRes(object=discoRes,type="individual",comps=c(1,2),block="mirna",title=NULL, + colorCol="classname",sizeValues=c(2,4),shapeValues=c(17,0), + background=TRUE,pointSize=4,labelSize=NULL,axisSize=NULL, + titleSize=NULL) Warning message: In data.row.names(row.names, rowsi, i) : some row.names duplicated: 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338 --> row.names NOT used > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > > > proc.time() user system elapsed 17.76 0.39 18.26 |
STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsPCA.Rout R version 3.4.4 (2018-03-15) -- "Someone to Lean On" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSPCA > ########################################### > require(STATegRa) Loading required package: STATegRa > > # g_legend (not exported by STATegRa any more) > ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs > g_legend<-function(a.gplot){ + tmp <- ggplot_gtable(ggplot_build(a.gplot)) + leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") + legend <- tmp$grobs[[leg]] + return(legend)} > > ######################### > ## PART 1. Load data > > ## Load data > data(STATegRa_S3) > > ls() [1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend" > > ## Create ExpressionSets > # Block1 - Expression data > B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname")) > # Block2 - miRNA expression data > B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname")) > > ######################### > ## PART 2. Model Selection > > require(grid) Loading required package: grid > require(gridExtra) Loading required package: gridExtra > require(ggplot2) Loading required package: ggplot2 > > ## 2.1 Select common components > cc <- selectCommonComps(X=Block1.PCA,Y=Block2.PCA,Rmax=3) > cc$common [1] 2 > cc$pssq > cc$pratios > #png("modelSelection.png",width=822,height=416) > grid.arrange(cc$pssq,cc$pratios,ncol=2) > #dev.off() > > ## 2.2 Select distinctive components > # Block 1 > PCA.selection(Data=Block1.PCA,fac.sel="single%",varthreshold=0.03)$numComps [1] 4 > # Block2 > PCA.selection(Data=Block2.PCA,fac.sel="single%",varthreshold=0.03)$numComps [1] 4 > > ## 2.3 Optimal components analysis > ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03) > ms $common [1] 2 $dist [1] 2 2 > > ######################### > ## PART 3. Component Analysis > > ## 3.1 Component analysis of the three methods > discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=ms$common,Rspecific=ms$dist,center=TRUE, + scale=TRUE,weight=TRUE) > jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=ms$common,Rspecific=ms$dist,center=TRUE, + scale=TRUE,weight=TRUE) > o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=ms$common,Rspecific=ms$dist,center=TRUE, + scale=TRUE,weight=TRUE) > > ## 3.2 Exploring scores structures > > # Exploring DISCO-SCA scores structure > discoRes@scores$common ## Common scores 1 2 sample1 0.0781574271 -0.0431500159 sample2 -0.1192218283 0.0294091364 sample3 -0.0531412251 -0.0746839920 sample4 0.0292975292 -0.0005956861 sample5 0.0202091807 0.0110464056 sample6 0.1226089080 0.1053465997 sample7 0.1078927977 -0.0322478156 sample8 0.1782895471 0.1449365434 sample9 0.0468698159 -0.0455174437 sample10 -0.0036030419 0.0420112407 sample11 -0.0035566475 -0.0566292926 sample12 0.1006128877 0.0641380231 sample13 -0.1174408170 0.0907488944 sample14 0.0981203246 0.0617737065 sample15 0.0085334190 -0.0087015939 sample16 0.0783148735 0.1581292822 sample17 -0.1483609890 0.0638582017 sample18 -0.0963086330 0.0556638146 sample19 -0.0217244128 -0.0720084387 sample20 -0.0635636510 -0.0779654958 sample21 -0.0201840188 0.1566391739 sample22 0.0218268522 -0.0764106478 sample23 0.0852042146 -0.0032685559 sample24 -0.1287170192 0.1924548578 sample25 -0.0430574085 -0.0456563049 sample26 -0.1453896720 0.0541514442 sample27 -0.0197489025 -0.1185659547 sample28 -0.1025336179 0.0650686831 sample29 0.0706018326 -0.0682990454 sample30 -0.1295627721 -0.0066773224 sample31 0.1147449114 0.1232684900 sample32 -0.0374310985 0.0380174894 sample33 0.0599515796 0.0136864264 sample34 -0.0984200879 0.0375319199 sample35 -0.0543098459 -0.0378108948 sample36 0.1403625326 -0.0343761155 sample37 0.0228941629 -0.0732852998 sample38 -0.0222077430 -0.0962595988 sample39 -0.0941738459 0.0215199990 sample40 0.0643800899 -0.0687877475 sample41 -0.0327638149 -0.1232188206 sample42 -0.0500431845 -0.0292471616 sample43 -0.0184498888 0.0233009630 sample44 0.1487899172 0.1171360512 sample45 -0.1050773981 0.1123204176 sample46 -0.1151195891 -0.1094030177 sample47 -0.0962593823 -0.0288465699 sample48 0.0004837525 -0.0310273485 sample49 0.1135207949 0.1213974554 sample50 -0.0123553256 -0.1740742861 sample51 0.0550529971 0.1258884774 sample52 0.0499121341 0.0728542937 sample53 0.1119773696 0.1588011668 sample54 -0.0360055673 0.0228575149 sample55 0.0210419004 0.0006730881 sample56 -0.0434169135 0.0633125819 sample57 0.0197824776 0.1150711796 sample58 0.0030439857 0.0326096699 sample59 0.0500252964 0.0129414313 sample60 0.0184278590 0.0136079444 sample61 0.0150299433 0.0635022663 sample62 -0.0304764117 -0.0201322974 sample63 0.1102252577 0.1285977353 sample64 0.1552588141 0.0971167608 sample65 -0.0058503020 0.0207116016 sample66 -0.0025605254 0.0424321514 sample67 0.1546634649 -0.0661722645 sample68 0.0536369058 -0.0923687308 sample69 0.0640330258 0.0081982154 sample70 0.0163517575 -0.0663230219 sample71 -0.0102537694 -0.1345919416 sample72 -0.0654196230 -0.0196123321 sample73 -0.1048556264 0.0220935459 sample74 0.0123799436 0.0586113213 sample75 0.0392077861 -0.0209756360 sample76 0.0648953327 -0.0524764636 sample77 0.1172922104 -0.0201186097 sample78 -0.1463067897 0.0708475756 sample79 0.0265211298 -0.1603302572 sample80 0.0279737064 -0.0214207485 sample81 0.0079211466 -0.0738448807 sample82 -0.1544236595 -0.0361468707 sample83 -0.0494211662 -0.0050053559 sample84 -0.0259038413 -0.0346547653 sample85 0.1116484213 -0.0031502055 sample86 -0.1306483212 -0.0377217932 sample87 -0.0554778217 -0.0459749374 sample88 -0.0301623729 0.0382197129 sample89 -0.1016866739 0.0694031753 sample90 0.0086819798 -0.0201319952 sample91 0.1578625139 -0.2097829661 sample92 0.0170936980 -0.1655800891 sample93 -0.0979806897 -0.0121512795 sample94 0.0131484002 -0.0114932207 sample95 0.0315682636 -0.0758856383 sample96 0.0024125607 -0.0470133235 sample97 0.0634545397 0.0270333225 sample98 -0.0359374731 -0.0135489476 sample99 -0.1009163129 0.1124783223 sample100 0.0551753086 0.0246488974 sample101 -0.0080119025 -0.1627366679 sample102 -0.0046443996 0.0095639516 sample103 -0.0472523284 -0.0940393765 sample104 0.0198159577 -0.0591088935 sample105 -0.0400237743 -0.0160910238 sample106 -0.0923808338 0.0369018385 sample107 -0.1019374019 0.0224953526 sample108 -0.0877091660 -0.0128833457 sample109 0.0864824578 -0.0900935014 sample110 -0.1223115496 -0.0096084621 sample111 0.0257354736 -0.0936163728 sample112 -0.0765286637 0.0270346028 sample113 0.0258803400 0.0377500075 sample114 0.0021138822 -0.0882013670 sample115 0.0303460433 -0.0723578422 sample116 0.0780508610 -0.0685061696 sample117 0.0536898295 -0.0911902740 sample118 0.0666651210 -0.0236229593 sample119 0.1021871590 -0.2324933513 sample120 0.0750216567 0.0243380764 sample121 -0.0756936330 0.0942949639 sample122 -0.0259627898 0.0731990399 sample123 -0.1037846331 -0.0369198118 sample124 0.0611208056 0.0421727389 sample125 -0.0738472722 0.0066950403 sample126 0.0972916316 0.0762637157 sample127 0.0824697549 -0.0096636941 sample128 -0.1249407464 0.0929315560 sample129 -0.0734067698 -0.0434365330 sample130 -0.0003502087 -0.0309852454 sample131 0.0930182755 0.0155935528 sample132 0.0736222917 0.0733032641 sample133 -0.0498397961 -0.0462436567 sample134 0.1644873531 0.0720003607 sample135 -0.0752297302 0.0003815223 sample136 0.0227145576 -0.0495507811 sample137 0.0564717208 -0.0288918445 sample138 0.0255988188 -0.0610853434 sample139 0.0621217754 0.0235805229 sample140 -0.0604152706 -0.0435596220 sample141 0.0246744012 0.0532649584 sample142 -0.0409560164 0.0316282085 sample143 -0.0077355169 -0.0476895669 sample144 0.0173240816 -0.0156777551 sample145 0.0485474837 0.1202772208 sample146 0.0419645429 -0.0811283268 sample147 -0.0977308528 -0.0274843422 sample148 0.0368256320 0.0803980163 sample149 -0.0072865836 -0.1532984500 sample150 0.1020825276 0.0624772293 sample151 0.0305399154 -0.0289275317 sample152 -0.0533594779 -0.0638307827 sample153 -0.0891627098 0.1799584486 sample154 -0.0727557617 -0.0834162444 sample155 -0.0880668695 -0.0220821987 sample156 -0.0276561152 -0.0326626450 sample157 -0.1155032218 0.0183615140 sample158 -0.0281507562 -0.0104939936 sample159 0.0663235800 0.0443838678 sample160 -0.0302643886 0.0404263728 sample161 0.0114715688 -0.0591022647 sample162 -0.1337086942 0.1398135696 sample163 0.1330124655 0.1688781871 sample164 -0.0150335999 0.0028418174 sample165 0.0076520339 -0.0164127537 sample166 0.0367794508 0.0630664378 sample167 0.1111988821 0.0030057439 sample168 -0.0672981537 0.0446279919 sample169 -0.0413005037 0.0224391694 > discoRes@scores$dist[[1]] ## Distinctive scores for Block 1 1 2 sample1 -0.0420517236 0.0867862953 sample2 -0.0820827591 -0.0410978468 sample3 0.0155896661 -0.0195182177 sample4 -0.1001336848 -0.0410787168 sample5 -0.0153465333 -0.0253259775 sample6 0.0340329944 -0.0408223195 sample7 0.0722578696 0.0002332633 sample8 -0.0457494303 -0.0370016673 sample9 -0.0086250836 0.0820184924 sample10 -0.0423597076 -0.0083923551 sample11 0.0022546486 0.0787766137 sample12 0.0322107192 0.1479824745 sample13 -0.0293885983 -0.0306748899 sample14 0.0337485133 -0.0367506791 sample15 0.0815538116 0.1275622900 sample16 0.0508457899 0.0540604660 sample17 0.0062598673 0.0041023659 sample18 0.0705641680 -0.0351047424 sample19 -0.0476844467 -0.0509598207 sample20 0.0522959751 0.0715522235 sample21 -0.0119120773 -0.0376093383 sample22 0.0724390027 -0.0095624645 sample23 -0.0992532283 0.0134288308 sample24 -0.1595111100 0.0728660954 sample25 -0.0920694905 -0.0749757643 sample26 -0.0595538825 0.0848965678 sample27 0.0826481299 -0.0086734843 sample28 -0.0384786019 0.0440966593 sample29 0.0777668219 0.1735308996 sample30 0.1229471149 -0.0819004902 sample31 0.0579850956 -0.0238644661 sample32 0.0970394476 -0.0111425880 sample33 0.1017588392 -0.0630442089 sample34 0.0637923834 0.0377941972 sample35 0.0789983557 -0.0229722776 sample36 0.1224939599 -0.1274954300 sample37 0.1798819508 -0.1673426440 sample38 0.0466300207 0.0888161323 sample39 -0.0168687310 0.0421533645 sample40 0.1756390870 -0.1526641395 sample41 0.0042366049 0.0004929012 sample42 -0.0447850869 -0.0651505176 sample43 0.0482309215 -0.0253529069 sample44 -0.1986709736 -0.0545779032 sample45 -0.0741832505 0.0054702754 sample46 0.0478767791 -0.0007071610 sample47 0.0608187164 0.0481622985 sample48 -0.1381490614 0.0578287139 sample49 -0.0530515070 -0.1405533285 sample50 -0.0173807251 0.1602389849 sample51 0.0462566089 0.0303473867 sample52 0.0280068384 0.0280388413 sample53 0.0667627379 0.0237702124 sample54 0.0121834623 -0.0521354295 sample55 0.0182396092 0.0221328519 sample56 -0.0001252965 0.0030907261 sample57 0.0316680373 0.0530190255 sample58 0.0393919493 -0.0297798601 sample59 0.1278291868 -0.0546527345 sample60 0.1486986107 0.1069157263 sample61 0.0793125182 0.0569796814 sample62 0.1172800005 -0.0149197874 sample63 -0.0028722568 0.1300519619 sample64 0.0237368034 0.1073287681 sample65 -0.0126534482 0.0589808344 sample66 -0.0468192873 -0.0771072989 sample67 0.1494263528 -0.0769859468 sample68 0.0977958138 -0.0577350432 sample69 0.0403087146 0.0156042305 sample70 0.0221528000 0.0315441173 sample71 -0.0546439737 -0.0272396500 sample72 0.1107487145 -0.0537318794 sample73 0.0906761478 0.0579967027 sample74 0.0586557466 0.0121421874 sample75 0.0390492314 0.0349283036 sample76 -0.0022961766 -0.1676558727 sample77 -0.0232095970 -0.2067302884 sample78 -0.0929752243 -0.0434940048 sample79 -0.1619502527 -0.0378114791 sample80 0.0680364180 0.1424663860 sample81 -0.0530786961 -0.0358350994 sample82 0.0266820551 -0.0577444911 sample83 0.1517234854 -0.0448553578 sample84 -0.0570968302 -0.0273813468 sample85 0.1086290594 -0.1228118798 sample86 0.0833858370 -0.0442914508 sample87 0.0022017288 -0.0943906773 sample88 -0.0078222343 -0.1140506633 sample89 0.0611059795 -0.0094584953 sample90 0.0022927426 -0.0936253948 sample91 0.0433581459 0.3205983311 sample92 -0.1815341361 -0.0334680933 sample93 0.0267629604 0.0614429183 sample94 0.0181876598 0.0605090518 sample95 -0.0720378764 -0.0013045891 sample96 -0.0559716871 -0.0118791616 sample97 -0.0217410541 0.0195413999 sample98 0.0379176310 0.0588357317 sample99 -0.0792423270 -0.0151274356 sample100 0.0222117226 -0.0023321362 sample101 -0.0387235764 0.1224226281 sample102 -0.2094613584 -0.0516443659 sample103 0.0138477403 0.0301052168 sample104 -0.0807988963 -0.0162719225 sample105 -0.0520493433 -0.1229665393 sample106 -0.0192611820 -0.0185238333 sample107 0.0319017300 0.0405123419 sample108 -0.0140691829 0.0163421338 sample109 -0.1831933748 0.0613006799 sample110 -0.0292790992 -0.0199849205 sample111 -0.1423255925 0.0327339777 sample112 0.0426333824 -0.0029083270 sample113 -0.0771903162 0.0268733210 sample114 -0.0241645084 -0.0184080395 sample115 -0.1959018551 0.0460129832 sample116 -0.1394477915 -0.0530806390 sample117 -0.1672364301 -0.1386537083 sample118 -0.0448344909 -0.0117622120 sample119 -0.0910395985 0.2217433288 sample120 -0.0331391582 -0.0057274694 sample121 0.0307577790 0.1392506553 sample122 -0.0839778347 -0.0291994941 sample123 0.0239649166 -0.0642163547 sample124 -0.0909149340 0.0130418994 sample125 -0.0065350288 -0.1092631852 sample126 0.0935313774 0.1368284386 sample127 0.0035387010 0.0292755669 sample128 -0.0660292743 0.1018565867 sample129 0.0693636965 -0.0695421329 sample130 0.0008492255 -0.0669704273 sample131 0.0431024618 0.0174065050 sample132 -0.0637037676 0.0029374301 sample133 -0.0289496288 -0.0390818900 sample134 0.0446206071 0.0456334604 sample135 0.0712336636 0.0521635304 sample136 0.0596268622 0.0197299691 sample137 0.0793150790 -0.0380627875 sample138 -0.0973550482 -0.0454218643 sample139 0.0539906657 -0.1534327141 sample140 0.0850824747 0.0955815015 sample141 -0.0192679718 -0.0554450242 sample142 -0.0672260394 -0.0461321289 sample143 -0.0303731604 -0.0519260316 sample144 -0.0089365290 0.0145814895 sample145 -0.0638764592 0.0122257907 sample146 0.0585852991 0.0063083758 sample147 0.0894132662 -0.1124615221 sample148 -0.0216363318 -0.0615967357 sample149 -0.0515425936 -0.0839903511 sample150 0.0568286079 -0.0124468747 sample151 -0.0789533339 -0.0261831525 sample152 -0.0330756496 0.1306443523 sample153 -0.1751924545 0.1497730977 sample154 0.0421421053 -0.0037009860 sample155 0.0680176427 0.0095711598 sample156 0.0388909182 0.1057563201 sample157 0.0314769628 0.0561367554 sample158 0.0329620050 0.0353947499 sample159 -0.0398414311 -0.1007374036 sample160 0.0424940391 0.0108496321 sample161 -0.0888372885 -0.0679700515 sample162 -0.0027471154 0.1237843640 sample163 -0.0126099026 0.0725434022 sample164 -0.0566779295 -0.0458324460 sample165 -0.0315336647 -0.0236362479 sample166 -0.0612055572 -0.0425233430 sample167 0.0142729888 0.0179308337 sample168 -0.0169501512 -0.0769618045 sample169 0.0675081198 0.0131505624 > discoRes@scores$dist[[2]] ## Distinctive scores for Block 2 1 2 sample1 -0.0012329584 -1.635717e-01 sample2 -0.0724349962 -6.021227e-03 sample3 -0.0188460461 -1.080036e-01 sample4 0.0390145356 3.114417e-04 sample5 0.1774811671 -2.996383e-02 sample6 -0.0451444357 -3.455857e-02 sample7 -0.0226466343 -7.020197e-03 sample8 -0.1033680091 -9.856739e-03 sample9 0.1350011657 8.979098e-02 sample10 0.1259887344 -5.097849e-02 sample11 0.0979788283 7.086533e-02 sample12 -0.0863019040 -8.620317e-02 sample13 -0.1381401090 1.828007e-01 sample14 -0.0615073832 -2.642803e-02 sample15 0.0381598895 -3.101666e-02 sample16 -0.0048776644 1.271872e-03 sample17 -0.0788480876 -1.547552e-02 sample18 -0.0884188734 -3.795487e-02 sample19 0.0703044451 -1.084004e-01 sample20 -0.0025585665 7.975871e-02 sample21 0.0941601828 -4.126735e-02 sample22 -0.0550273502 -7.806748e-02 sample23 0.0679495393 -4.102003e-02 sample24 -0.1310962569 1.649310e-01 sample25 0.0113585339 -4.426861e-02 sample26 -0.1402945815 2.016546e-02 sample27 0.0261560960 1.588387e-03 sample28 -0.0724198648 5.850596e-02 sample29 -0.0330058701 2.060779e-03 sample30 -0.0228752639 -2.015433e-02 sample31 -0.0635067863 -6.670332e-02 sample32 0.0685099635 -4.955274e-02 sample33 -0.0777765230 -1.272079e-01 sample34 0.0157842421 -3.024314e-02 sample35 -0.0529632926 1.500972e-01 sample36 0.0070900515 2.025307e-01 sample37 -0.0442420898 1.802088e-01 sample38 -0.0781511400 -3.676425e-02 sample39 0.0120331918 -3.388840e-02 sample40 -0.0473292353 1.471561e-01 sample41 0.0228189315 -2.673558e-02 sample42 -0.0245360190 -7.960866e-02 sample43 0.1036362832 -8.229577e-02 sample44 -0.1012228589 7.049459e-02 sample45 0.0013732223 -2.450905e-02 sample46 -0.0558510142 2.947337e-03 sample47 -0.0380481265 4.554171e-02 sample48 0.0784342143 4.888984e-02 sample49 -0.0605163820 -1.162351e-02 sample50 0.0530079144 -2.737937e-02 sample51 0.1514646570 5.678348e-02 sample52 0.1860935208 1.246717e-01 sample53 -0.0064177008 -2.700991e-02 sample54 0.0697038369 -2.308388e-02 sample55 0.1633577009 1.366442e-02 sample56 0.1011485139 4.682208e-02 sample57 0.1730374205 1.609604e-01 sample58 -0.0071384702 -1.666955e-02 sample59 -0.0030461797 3.005282e-02 sample60 0.0215834893 2.665877e-01 sample61 0.1510583578 1.002385e-01 sample62 -0.0925534036 -4.845846e-02 sample63 -0.0596311665 -4.137019e-02 sample64 -0.0449225747 -2.600566e-03 sample65 0.0939383812 -4.406907e-02 sample66 0.1063400857 -5.709989e-02 sample67 -0.0201590331 2.361727e-01 sample68 0.0037203024 2.418383e-02 sample69 -0.0645161180 -1.155622e-01 sample70 -0.1013440023 -1.351789e-01 sample71 -0.0016467937 -2.976844e-02 sample72 0.0328892936 -2.835861e-02 sample73 0.0275080030 -5.148187e-02 sample74 0.1341719731 -7.895279e-02 sample75 0.0951575629 -3.943185e-02 sample76 -0.0864722033 3.034989e-02 sample77 -0.1035749567 -2.545354e-02 sample78 -0.1575644006 4.939599e-02 sample79 0.0189137037 4.874679e-02 sample80 0.1384140510 4.263328e-05 sample81 -0.0118846450 -6.357932e-02 sample82 -0.1675308225 3.533909e-02 sample83 -0.0065673490 -7.812614e-02 sample84 0.1486891646 -3.109055e-02 sample85 -0.0532724562 7.417880e-02 sample86 -0.1138477423 -1.919076e-05 sample87 0.0432863915 6.080471e-02 sample88 0.0433450340 1.402491e-01 sample89 0.0331205811 -1.395400e-02 sample90 -0.0607412791 -8.610415e-02 sample91 -0.0566272946 1.303746e-01 sample92 -0.0359582564 1.061604e-01 sample93 -0.0433646360 -4.443636e-02 sample94 -0.0477291273 -1.059574e-01 sample95 -0.0249595765 -3.980526e-02 sample96 0.0035219060 -9.293928e-02 sample97 -0.0066048640 -1.527231e-01 sample98 0.0020366806 -5.579551e-02 sample99 -0.0886615894 -3.728220e-02 sample100 -0.1091259119 -3.560421e-02 sample101 -0.0739726577 -4.318003e-02 sample102 0.0574461349 -2.783907e-02 sample103 0.0142730925 9.705527e-03 sample104 0.0710395199 4.068352e-02 sample105 0.0980831399 -3.452951e-02 sample106 -0.0254259271 3.628986e-02 sample107 -0.0160653394 -9.173394e-02 sample108 -0.0200987634 -2.379692e-02 sample109 -0.0389780606 1.692361e-02 sample110 -0.0326304832 2.988110e-02 sample111 0.0676937624 -6.038211e-02 sample112 0.0167883429 5.336939e-03 sample113 0.0969217126 -2.757600e-02 sample114 -0.0026398366 -9.209159e-02 sample115 -0.0308047236 1.603826e-02 sample116 -0.1240307200 1.273000e-01 sample117 0.0334729100 5.392712e-02 sample118 -0.1037152944 6.252430e-02 sample119 -0.1064176870 1.196202e-01 sample120 -0.0771354999 -1.004932e-01 sample121 -0.0129350698 3.181978e-02 sample122 0.0847492459 -5.568321e-02 sample123 -0.0041336823 7.693165e-03 sample124 -0.0583457851 -8.396386e-02 sample125 0.0634844648 -5.232539e-02 sample126 -0.0662580910 -1.091733e-01 sample127 -0.0865024570 -1.094176e-01 sample128 -0.0627817271 -1.470958e-02 sample129 -0.0336276518 -4.007862e-02 sample130 -0.0293517735 -8.046118e-02 sample131 -0.0469197697 -2.209764e-03 sample132 -0.0241740502 -1.248598e-01 sample133 0.0907303191 1.466701e-02 sample134 -0.0350842110 7.539662e-02 sample135 0.0001333352 9.185361e-03 sample136 -0.0335876106 -9.860277e-02 sample137 -0.0640148969 -7.554474e-02 sample138 0.0060964874 -1.742761e-02 sample139 -0.0592084521 5.614967e-02 sample140 0.0427985830 -1.099554e-02 sample141 0.0618796496 -9.301035e-02 sample142 0.0898554540 3.573421e-02 sample143 0.0817389150 8.880524e-02 sample144 0.0787754793 -3.821391e-02 sample145 0.1085821656 1.569477e-01 sample146 -0.0589558046 -4.373365e-02 sample147 -0.0495330534 7.277168e-03 sample148 0.1161592875 9.079120e-03 sample149 -0.0121579596 7.788370e-02 sample150 -0.0314512560 3.520212e-02 sample151 0.0575382218 -1.945351e-02 sample152 -0.0494542161 7.025536e-02 sample153 -0.0941332530 2.153298e-01 sample154 -0.0335932123 2.078725e-02 sample155 0.0690457598 -2.780412e-02 sample156 0.1039901595 -6.292526e-02 sample157 -0.0408645783 8.065515e-03 sample158 0.1018105269 7.816870e-03 sample159 -0.0281730466 -1.207204e-02 sample160 0.1643053014 2.978116e-03 sample161 0.0374329225 8.524611e-02 sample162 -0.0804535219 8.349759e-02 sample163 -0.0743227815 -1.406220e-02 sample164 0.1208806075 -2.139457e-02 sample165 0.1608115914 2.025193e-02 sample166 -0.0425944520 -2.660711e-02 sample167 -0.0226849480 -4.464283e-02 sample168 -0.0180735519 -7.465987e-04 sample169 0.0190778961 2.645401e-02 > # Exploring O2PLS scores structure > o2plsRes@scores$common[[1]] ## Common scores for Block 1 [,1] [,2] sample1 -0.0572060227 -1.729087e-02 sample2 0.0875245208 1.112588e-02 sample3 0.0403482602 -3.168994e-02 sample4 -0.0218345996 4.052760e-06 sample5 -0.0150905011 4.795041e-03 sample6 -0.0924362933 4.511003e-02 sample7 -0.0793066751 -1.243823e-02 sample8 -0.1342997187 6.215220e-02 sample9 -0.0338886944 -1.854401e-02 sample10 0.0020547173 1.749421e-02 sample11 0.0037275602 -2.364116e-02 sample12 -0.0753094533 2.772698e-02 sample13 0.0856160091 3.679963e-02 sample14 -0.0737457307 2.668452e-02 sample15 -0.0062111746 -3.554864e-03 sample16 -0.0602355268 6.675115e-02 sample17 0.1086768843 2.524534e-02 sample18 0.0702999472 2.231671e-02 sample19 0.0173785882 -3.024846e-02 sample20 0.0484173812 -3.310904e-02 sample21 0.0124657042 6.517144e-02 sample22 -0.0140989936 -3.159137e-02 sample23 -0.0627028403 -5.393710e-04 sample24 0.0919972100 7.909297e-02 sample25 0.0326998483 -1.945206e-02 sample26 0.1064741246 2.120849e-02 sample27 0.0166058995 -4.964993e-02 sample28 0.0743504770 2.614211e-02 sample29 -0.0511008491 -2.782647e-02 sample30 0.0962250842 -3.974893e-03 sample31 -0.0869563008 5.250819e-02 sample32 0.0271858919 1.552005e-02 sample33 -0.0448364581 6.243160e-03 sample34 0.0718415218 1.469396e-02 sample35 0.0403086451 -1.632629e-02 sample36 -0.1036402827 -1.304320e-02 sample37 -0.0159385744 -3.036525e-02 sample38 0.0182198369 -4.034805e-02 sample39 0.0690363619 8.058350e-03 sample40 -0.0467312750 -2.810325e-02 sample41 0.0263674438 -5.171216e-02 sample42 0.0374578960 -1.268634e-02 sample43 0.0132336869 9.536642e-03 sample44 -0.1119154428 5.028683e-02 sample45 0.0759639367 4.587903e-02 sample46 0.0871885519 -4.670385e-02 sample47 0.0721490571 -1.288540e-02 sample48 0.0005086144 -1.290565e-02 sample49 -0.0858177028 5.173760e-02 sample50 0.0118992665 -7.276215e-02 sample51 -0.0426446855 5.306205e-02 sample52 -0.0381605826 3.086785e-02 sample53 -0.0855757630 6.730043e-02 sample54 0.0261723092 9.184260e-03 sample55 -0.0156418304 4.682404e-04 sample56 0.0307831193 2.597550e-02 sample57 -0.0157242103 4.829381e-02 sample58 -0.0031174404 1.359898e-02 sample59 -0.0373001859 5.868397e-03 sample60 -0.0142609099 5.831654e-03 sample61 -0.0122255144 2.663579e-02 sample62 0.0228002942 -8.692265e-03 sample63 -0.0833127581 5.473229e-02 sample64 -0.1166548159 4.196500e-02 sample65 0.0038808902 8.568590e-03 sample66 0.0011561811 1.766612e-02 sample67 -0.1129311062 -2.608702e-02 sample68 -0.0382526429 -3.804045e-02 sample69 -0.0476502440 4.003241e-03 sample70 -0.0110329882 -2.752719e-02 sample71 0.0096850282 -5.627056e-02 sample72 0.0487124704 -8.800131e-03 sample73 0.0773058132 8.239864e-03 sample74 -0.0102488176 2.454957e-02 sample75 -0.0286613976 -8.387293e-03 sample76 -0.0472655595 -2.129315e-02 sample77 -0.0865043074 -7.296820e-03 sample78 0.1070293698 2.818346e-02 sample79 -0.0165060681 -6.659721e-02 sample80 -0.0206765949 -8.712112e-03 sample81 -0.0050943615 -3.079175e-02 sample82 0.1153622361 -1.647054e-02 sample83 0.0367979217 -2.538114e-03 sample84 0.0199463070 -1.468961e-02 sample85 -0.0827122185 -2.709824e-04 sample86 0.0969487314 -1.699897e-02 sample87 0.0421957457 -1.965953e-02 sample88 0.0215934743 1.566050e-02 sample89 0.0751559502 2.811652e-02 sample90 -0.0057328000 -8.283795e-03 sample91 -0.1134005268 -8.603522e-02 sample92 -0.0101689918 -6.894992e-02 sample93 0.0725967502 -6.003176e-03 sample94 -0.0096878852 -4.693081e-03 sample95 -0.0223502239 -3.139636e-02 sample96 -0.0013232863 -1.963604e-02 sample97 -0.0476541710 1.183660e-02 sample98 0.0269546160 -5.978398e-03 sample99 0.0728179461 4.597884e-02 sample100 -0.0413398038 1.079347e-02 sample101 0.0087536994 -6.796076e-02 sample102 0.0032509529 3.932612e-03 sample103 0.0360342395 -3.973263e-02 sample104 -0.0141722563 -2.453107e-02 sample105 0.0294940465 -7.140722e-03 sample106 0.0686472054 1.462895e-02 sample107 0.0748635927 8.401339e-03 sample108 0.0650175850 -6.211942e-03 sample109 -0.0628017242 -3.681224e-02 sample110 0.0905513691 -5.169053e-03 sample111 -0.0176679473 -3.884777e-02 sample112 0.0570870472 1.066018e-02 sample113 -0.0200110554 1.596044e-02 sample114 -0.0001474542 -3.679272e-02 sample115 -0.0213333038 -2.991667e-02 sample116 -0.0567675453 -2.785636e-02 sample117 -0.0379865990 -3.752078e-02 sample118 -0.0484878786 -9.173691e-03 sample119 -0.0713511831 -9.598634e-02 sample120 -0.0555093586 1.089843e-02 sample121 0.0542443861 3.861344e-02 sample122 0.0178575357 3.027138e-02 sample123 0.0775020581 -1.636852e-02 sample124 -0.0460701050 1.814758e-02 sample125 0.0543846585 2.075898e-03 sample126 -0.0729417144 3.276659e-02 sample127 -0.0609509157 -3.270814e-03 sample128 0.0908136899 3.758801e-02 sample129 0.0552445878 -1.879062e-02 sample130 0.0007128089 -1.294308e-02 sample131 -0.0693311345 7.357082e-03 sample132 -0.0556565156 3.126995e-02 sample133 0.0375870104 -1.977240e-02 sample134 -0.1229130924 3.159495e-02 sample135 0.0555550315 -5.563250e-04 sample136 -0.0159768414 -2.046339e-02 sample137 -0.0412337694 -1.151652e-02 sample138 -0.0180604476 -2.526505e-02 sample139 -0.0465649201 1.040683e-02 sample140 0.0452288969 -1.876279e-02 sample141 -0.0189142561 2.247042e-02 sample142 0.0297545566 1.280524e-02 sample143 0.0064292003 -1.997706e-02 sample144 -0.0124284903 -6.369733e-03 sample145 -0.0377141491 5.066743e-02 sample146 -0.0296240067 -3.344465e-02 sample147 0.0726083535 -1.239968e-02 sample148 -0.0284795794 3.389732e-02 sample149 0.0082261455 -6.399305e-02 sample150 -0.0765013197 2.704021e-02 sample151 -0.0220567356 -1.178159e-02 sample152 0.0403422737 -2.714879e-02 sample153 0.0629117719 7.425085e-02 sample154 0.0551622927 -3.548984e-02 sample155 0.0654439133 -1.005306e-02 sample156 0.0209310714 -1.390213e-02 sample157 0.0851522597 6.577150e-03 sample158 0.0208354599 -4.663078e-03 sample159 -0.0498794349 1.913257e-02 sample160 0.0216074437 1.656579e-02 sample161 -0.0075742328 -2.455676e-02 sample162 0.0963663017 5.705881e-02 sample163 -0.1009542191 7.174224e-02 sample164 0.0109881996 1.026806e-03 sample165 -0.0053146157 -6.772855e-03 sample166 -0.0275757357 2.673084e-02 sample167 -0.0825048036 2.278863e-03 sample168 0.0486147429 1.793843e-02 sample169 0.0302506727 8.984253e-03 > o2plsRes@scores$common[[2]] ## Common scores for Block 2 [,1] [,2] sample1 -0.0621842115 -1.364509e-02 sample2 0.0944623785 9.720892e-03 sample3 0.0406196267 -2.236338e-02 sample4 -0.0229316496 -3.932487e-04 sample5 -0.0157330047 3.231033e-03 sample6 -0.0945794025 3.120720e-02 sample7 -0.0854427118 -1.052880e-02 sample8 -0.1376625920 4.286608e-02 sample9 -0.0377115311 -1.415134e-02 sample10 0.0035244506 1.280825e-02 sample11 0.0016639987 -1.717895e-02 sample12 -0.0781403168 1.884368e-02 sample13 0.0938400516 2.838858e-02 sample14 -0.0759839772 1.810989e-02 sample15 -0.0068340837 -2.705361e-03 sample16 -0.0590150849 4.757848e-02 sample17 0.1178805097 2.040526e-02 sample18 0.0767858320 1.756604e-02 sample19 0.0157112113 -2.172867e-02 sample20 0.0485318300 -2.327033e-02 sample21 0.0185928176 4.777095e-02 sample22 -0.0191358702 -2.329775e-02 sample23 -0.0672994194 -1.535656e-03 sample24 0.1047476642 5.935707e-02 sample25 0.0329844953 -1.358036e-02 sample26 0.1154952052 1.741529e-02 sample27 0.0133849853 -3.590922e-02 sample28 0.0821554039 2.042376e-02 sample29 -0.0567643690 -2.123848e-02 sample30 0.1016073931 -1.134728e-03 sample31 -0.0880396372 3.670548e-02 sample32 0.0300363338 1.182406e-02 sample33 -0.0467252272 3.739254e-03 sample34 0.0783666394 1.203777e-02 sample35 0.0424227097 -1.118559e-02 sample36 -0.1107646166 -1.143464e-02 sample37 -0.0191667664 -2.246060e-02 sample38 0.0155968095 -2.909621e-02 sample39 0.0746847148 7.148218e-03 sample40 -0.0517028178 -2.137267e-02 sample41 0.0234979494 -3.723018e-02 sample42 0.0388797356 -8.557228e-03 sample43 0.0149555568 7.210002e-03 sample44 -0.1150305613 3.461805e-02 sample45 0.0846146236 3.486020e-02 sample46 0.0884426404 -3.246853e-02 sample47 0.0748644971 -8.083045e-03 sample48 -0.0012033198 -9.403647e-03 sample49 -0.0872662737 3.616245e-02 sample50 0.0066941314 -5.284863e-02 sample51 -0.0411777630 3.791830e-02 sample52 -0.0379355780 2.180834e-02 sample53 -0.0851639886 4.751761e-02 sample54 0.0288006248 7.184424e-03 sample55 -0.0164920835 5.919925e-05 sample56 0.0355115616 1.951043e-02 sample57 -0.0141146068 3.492409e-02 sample58 -0.0015636132 9.862883e-03 sample59 -0.0390656483 3.590929e-03 sample60 -0.0139454780 3.963030e-03 sample61 -0.0106410274 1.919705e-02 sample62 0.0236748439 -5.922677e-03 sample63 -0.0846790877 3.839102e-02 sample64 -0.1202581015 2.846469e-02 sample65 0.0050548584 6.328644e-03 sample66 0.0028013072 1.291807e-02 sample67 -0.1231623009 -2.112565e-02 sample68 -0.0437782161 -2.845072e-02 sample69 -0.0501199692 2.053469e-03 sample70 -0.0140278645 -2.027157e-02 sample71 0.0057489505 -4.085977e-02 sample72 0.0511212704 -5.522408e-03 sample73 0.0828141409 7.431582e-03 sample74 -0.0085959456 1.772951e-02 sample75 -0.0312180394 -6.636869e-03 sample76 -0.0519051781 -1.640191e-02 sample77 -0.0925924762 -6.907800e-03 sample78 0.1163971046 2.251122e-02 sample79 -0.0240906926 -4.887766e-02 sample80 -0.0221327065 -6.730703e-03 sample81 -0.0072114968 -2.254399e-02 sample82 0.1204416674 -9.907422e-03 sample83 0.0386739485 -1.171663e-03 sample84 0.0195988488 -1.033806e-02 sample85 -0.0877680171 -1.725057e-03 sample86 0.1023541048 -1.062501e-02 sample87 0.0425213089 -1.356865e-02 sample88 0.0244788514 1.180820e-02 sample89 0.0804276691 2.188588e-02 sample90 -0.0074639871 -6.140721e-03 sample91 -0.1278832404 -6.485140e-02 sample92 -0.0162199697 -5.048358e-02 sample93 0.0769344893 -3.045135e-03 sample94 -0.0104345587 -3.593172e-03 sample95 -0.0260058453 -2.330475e-02 sample96 -0.0025018700 -1.433516e-02 sample97 -0.0492358305 7.774183e-03 sample98 0.0279220220 -3.862141e-03 sample99 0.0813921923 3.487339e-02 sample100 -0.0428797405 7.112807e-03 sample101 0.0032855240 -4.940743e-02 sample102 0.0038439317 2.938008e-03 sample103 0.0358511139 -2.831881e-02 sample104 -0.0162784000 -1.815061e-02 sample105 0.0314853405 -4.656633e-03 sample106 0.0726456731 1.192390e-02 sample107 0.0807342975 7.508627e-03 sample108 0.0688338003 -3.336161e-03 sample109 -0.0694151950 -2.800146e-02 sample110 0.0961218924 -2.111997e-03 sample111 -0.0217900036 -2.864702e-02 sample112 0.0599954082 8.820317e-03 sample113 -0.0195006577 1.128215e-02 sample114 -0.0032126533 -2.682851e-02 sample115 -0.0251101087 -2.221077e-02 sample116 -0.0625141551 -2.137258e-02 sample117 -0.0440473375 -2.806256e-02 sample118 -0.0532042630 -7.590494e-03 sample119 -0.0848603028 -7.133574e-02 sample120 -0.0588832131 6.937326e-03 sample121 0.0613899126 2.915307e-02 sample122 0.0218424338 2.241775e-02 sample123 0.0809008460 -1.051759e-02 sample124 -0.0472109313 1.239887e-02 sample125 0.0583180947 2.521167e-03 sample126 -0.0753941872 2.256455e-02 sample127 -0.0649774209 -3.496964e-03 sample128 0.1000212216 2.908091e-02 sample129 0.0568033049 -1.269016e-02 sample130 -0.0002370832 -9.419675e-03 sample131 -0.0727030877 4.091672e-03 sample132 -0.0566219024 2.179861e-02 sample133 0.0384172955 -1.372840e-02 sample134 -0.1280862736 2.077912e-02 sample135 0.0592633273 6.106685e-04 sample136 -0.0187635410 -1.521173e-02 sample137 -0.0449958970 -9.152840e-03 sample138 -0.0211348699 -1.875415e-02 sample139 -0.0482882861 6.729304e-03 sample140 0.0468926306 -1.285498e-02 sample141 -0.0186248693 1.605439e-02 sample142 0.0328031246 9.887746e-03 sample143 0.0052919839 -1.445666e-02 sample144 -0.0140067923 -4.867248e-03 sample145 -0.0361804310 3.625323e-02 sample146 -0.0345286735 -2.493652e-02 sample147 0.0765025670 -7.714769e-03 sample148 -0.0276016641 2.420589e-02 sample149 0.0027545308 -4.653007e-02 sample150 -0.0792296010 1.831289e-02 sample151 -0.0245894512 -8.991738e-03 sample152 0.0409796547 -1.907063e-02 sample153 0.0734301757 5.528780e-02 sample154 0.0557740684 -2.487723e-02 sample155 0.0689436560 -6.127635e-03 sample156 0.0212272938 -9.747423e-03 sample157 0.0911931194 6.355708e-03 sample158 0.0220840645 -3.016357e-03 sample159 -0.0513244242 1.304175e-02 sample160 0.0246213576 1.248444e-02 sample161 -0.0100369130 -1.805391e-02 sample162 0.1078802043 4.337260e-02 sample163 -0.1017965082 5.047171e-02 sample164 0.0119430799 9.593002e-04 sample165 -0.0063708014 -5.032148e-03 sample166 -0.0283181180 1.899222e-02 sample167 -0.0872832229 1.516582e-04 sample168 0.0540714512 1.397701e-02 sample169 0.0328432652 7.104347e-03 > o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1 [,1] [,2] sample1 0.0133684846 2.195848e-02 sample2 0.0254157197 -1.058416e-02 sample3 -0.0049551479 -4.840017e-03 sample4 0.0310390570 -1.063929e-02 sample5 0.0046941318 -6.488426e-03 sample6 -0.0107406753 -1.026702e-02 sample7 -0.0225157631 2.624712e-04 sample8 0.0141320952 -9.505821e-03 sample9 0.0029681280 2.078210e-02 sample10 0.0131729174 -2.275042e-03 sample11 -0.0004164298 1.994019e-02 sample12 -0.0095211620 3.759883e-02 sample13 0.0091018604 -7.953956e-03 sample14 -0.0106557524 -9.181659e-03 sample15 -0.0249924121 3.262724e-02 sample16 -0.0156216400 1.375700e-02 sample17 -0.0019382446 1.073994e-03 sample18 -0.0221072481 -8.703592e-03 sample19 0.0146917619 -1.311712e-02 sample20 -0.0160353760 1.826290e-02 sample21 0.0035947899 -9.616341e-03 sample22 -0.0225060762 -2.532589e-03 sample23 0.0310000683 3.033060e-03 sample24 0.0499544372 1.809450e-02 sample25 0.0284442301 -1.932558e-02 sample26 0.0188220043 2.146985e-02 sample27 -0.0257763219 -1.999228e-03 sample28 0.0120888648 1.125834e-02 sample29 -0.0236482520 4.426726e-02 sample30 -0.0385486305 -2.055935e-02 sample31 -0.0181539336 -5.877838e-03 sample32 -0.0302630460 -2.607192e-03 sample33 -0.0319565715 -1.562628e-02 sample34 -0.0197970124 9.906813e-03 sample35 -0.0247412713 -5.434440e-03 sample36 -0.0386259060 -3.190394e-02 sample37 -0.0566199273 -4.192574e-02 sample38 -0.0142060273 2.259644e-02 sample39 0.0053589035 1.076485e-02 sample40 -0.0552546493 -3.819896e-02 sample41 -0.0013089975 9.278818e-05 sample42 0.0137252142 -1.664652e-02 sample43 -0.0151259626 -6.290953e-03 sample44 0.0617391754 -1.442883e-02 sample45 0.0231410886 1.163143e-03 sample46 -0.0148898209 -1.384176e-04 sample47 -0.0187252536 1.221690e-02 sample48 0.0432839432 1.416671e-02 sample49 0.0160818605 -3.588745e-02 sample50 0.0059333545 4.067003e-02 sample51 -0.0142914866 7.776270e-03 sample52 -0.0086339952 7.208917e-03 sample53 -0.0207386980 6.272432e-03 sample54 -0.0039856719 -1.316934e-02 sample55 -0.0056217017 5.692315e-03 sample56 0.0000123292 8.978290e-04 sample57 -0.0095805555 1.324253e-02 sample58 -0.0124160295 -7.326376e-03 sample59 -0.0400195442 -1.349736e-02 sample60 -0.0460063358 2.770091e-02 sample61 -0.0245266456 1.470710e-02 sample62 -0.0366022783 -3.437352e-03 sample63 0.0013742171 3.288796e-02 sample64 -0.0070599859 2.739588e-02 sample65 0.0041201911 1.498268e-02 sample66 0.0143173351 -1.968812e-02 sample67 -0.0467477531 -1.929938e-02 sample68 -0.0306751978 -1.436184e-02 sample69 -0.0125317217 4.130407e-03 sample70 -0.0068071487 8.080857e-03 sample71 0.0169170264 -7.027348e-03 sample72 -0.0346909749 -1.333770e-02 sample73 -0.0280506153 1.493843e-02 sample74 -0.0182611498 3.294697e-03 sample75 -0.0120563964 8.974612e-03 sample76 0.0001437236 -4.253184e-02 sample77 0.0065330299 -5.252886e-02 sample78 0.0288278141 -1.127782e-02 sample79 0.0503961481 -1.023318e-02 sample80 -0.0207693429 3.648391e-02 sample81 0.0163562768 -9.074596e-03 sample82 -0.0084317129 -1.478976e-02 sample83 -0.0474097918 -1.103126e-02 sample84 0.0177181395 -7.191197e-03 sample85 -0.0342718548 -3.082360e-02 sample86 -0.0261671791 -1.089491e-02 sample87 -0.0009486358 -2.411514e-02 sample88 0.0020528931 -2.894615e-02 sample89 -0.0189361111 -2.638639e-03 sample90 -0.0009863658 -2.390075e-02 sample91 -0.0124352695 8.153234e-02 sample92 0.0564264106 -8.909537e-03 sample93 -0.0081461774 1.570851e-02 sample94 -0.0054896581 1.547251e-02 sample95 0.0224073150 -4.374348e-04 sample96 0.0173528924 -3.050441e-03 sample97 0.0067948115 5.008237e-03 sample98 -0.0116030825 1.498764e-02 sample99 0.0246422688 -4.054795e-03 sample100 -0.0069420745 -4.846343e-04 sample101 0.0124923691 3.091503e-02 sample102 0.0650835386 -1.367400e-02 sample103 -0.0042741828 7.855985e-03 sample104 0.0250591040 -4.171938e-03 sample105 0.0157516368 -3.121990e-02 sample106 0.0060593853 -5.101693e-03 sample107 -0.0098329626 1.044506e-02 sample108 0.0044269853 4.142036e-03 sample109 0.0572473486 1.517542e-02 sample110 0.0090474827 -5.119868e-03 sample111 0.0444263015 7.983232e-03 sample112 -0.0131765484 -9.696342e-04 sample113 0.0241047399 6.706740e-03 sample114 0.0074558775 -4.728652e-03 sample115 0.0611851433 1.117210e-02 sample116 0.0432646951 -1.380556e-02 sample117 0.0516750066 -3.575617e-02 sample118 0.0139942100 -3.279138e-03 sample119 0.0291722987 5.587946e-02 sample120 0.0103515853 -1.690016e-03 sample121 -0.0091396331 3.552116e-02 sample122 0.0260431679 -7.583975e-03 sample123 -0.0076666389 -1.628489e-02 sample124 0.0283466326 3.127845e-03 sample125 0.0016472378 -2.770692e-02 sample126 -0.0286529417 3.489336e-02 sample127 -0.0010224500 7.483214e-03 sample128 0.0209049296 2.572016e-02 sample129 -0.0218184878 -1.755347e-02 sample130 -0.0005009620 -1.697978e-02 sample131 -0.0134032968 4.637390e-03 sample132 0.0198526786 5.723983e-04 sample133 0.0088812957 -9.988115e-03 sample134 -0.0137484514 1.172591e-02 sample135 -0.0220314568 1.347465e-02 sample136 -0.0185173353 5.168079e-03 sample137 -0.0248352123 -9.472788e-03 sample138 0.0301635767 -1.175283e-02 sample139 -0.0173576929 -3.872592e-02 sample140 -0.0262157762 2.456863e-02 sample141 0.0058369763 -1.420854e-02 sample142 0.0207886071 -1.188764e-02 sample143 0.0092832598 -1.324238e-02 sample144 0.0028442140 3.627979e-03 sample145 0.0199749569 2.862202e-03 sample146 -0.0182236697 1.726556e-03 sample147 -0.0282519995 -2.825595e-02 sample148 0.0065435868 -1.572917e-02 sample149 0.0158233820 -2.159451e-02 sample150 -0.0177383738 -3.020633e-03 sample151 0.0245166984 -6.888241e-03 sample152 0.0107259913 3.314630e-02 sample153 0.0550963965 3.758760e-02 sample154 -0.0131452472 -8.153903e-04 sample155 -0.0211742574 2.642246e-03 sample156 -0.0117803505 2.698265e-02 sample157 -0.0096167165 1.433840e-02 sample158 -0.0101754772 9.137620e-03 sample159 0.0120662931 -2.565236e-02 sample160 -0.0132238202 2.916023e-03 sample161 0.0274491966 -1.748284e-02 sample162 0.0012482909 3.152261e-02 sample163 0.0042031315 1.830701e-02 sample164 0.0174896157 -1.175915e-02 sample165 0.0097517662 -6.119019e-03 sample166 0.0190134679 -1.121582e-02 sample167 -0.0044140836 4.665585e-03 sample168 0.0049689168 -1.941822e-02 sample169 -0.0209802098 3.498729e-03 > o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2 [,1] [,2] sample1 -0.0515543627 -0.0305856787 sample2 -0.0144993256 0.0236342950 sample3 -0.0371833108 -0.0140263348 sample4 0.0068945388 -0.0132539692 sample5 0.0215035333 -0.0663338101 sample6 -0.0187055152 0.0088773016 sample7 -0.0061521552 0.0064029054 sample8 -0.0210874459 0.0334652901 sample9 0.0516865043 -0.0291142799 sample10 0.0059440366 -0.0527217447 sample11 0.0393010793 -0.0200624712 sample12 -0.0420837100 0.0131331362 sample13 0.0333252565 0.0818552509 sample14 -0.0190062644 0.0160202175 sample15 -0.0030968049 -0.0189230681 sample16 -0.0004452158 0.0018880102 sample17 -0.0185848615 0.0240170131 sample18 -0.0273093598 0.0230213640 sample19 -0.0217761111 -0.0445894441 sample20 0.0245820821 0.0159812738 sample21 0.0034527644 -0.0400016054 sample22 -0.0340789054 0.0039289109 sample23 -0.0010344929 -0.0310161212 sample24 0.0289468503 0.0760962436 sample25 -0.0119098496 -0.0122798760 sample26 -0.0181001057 0.0517892852 sample27 0.0050465417 -0.0086515844 sample28 0.0057491502 0.0358830107 sample29 -0.0051104246 0.0116605117 sample30 -0.0103085904 0.0039678538 sample31 -0.0319929858 0.0090606113 sample32 -0.0036232521 -0.0328202010 sample33 -0.0534742153 0.0024751837 sample34 -0.0067495749 -0.0111000311 sample35 0.0378745721 0.0465929296 sample36 0.0647886800 0.0359987924 sample37 0.0488441236 0.0492906912 sample38 -0.0251514062 0.0197110110 sample39 -0.0085428066 -0.0105117852 sample40 0.0379324087 0.0440810741 sample41 -0.0044199152 -0.0128820644 sample42 -0.0292553573 -0.0067045265 sample43 -0.0077829155 -0.0510178219 sample44 0.0045122248 0.0479660309 sample45 -0.0074444298 -0.0051116726 sample46 -0.0088025512 0.0196186661 sample47 0.0076696301 0.0215947965 sample48 0.0290108585 -0.0175568376 sample49 -0.0141754858 0.0184717099 sample50 0.0006282201 -0.0233054373 sample51 0.0441995177 -0.0410022921 sample52 0.0715329391 -0.0399499475 sample53 -0.0095954087 -0.0029140909 sample54 0.0048933768 -0.0281884386 sample55 0.0327325487 -0.0532290012 sample56 0.0323068984 -0.0256595538 sample57 0.0806603122 -0.0286748097 sample58 -0.0064792049 -0.0006945349 sample59 0.0088958941 0.0067389649 sample60 0.0874124612 0.0431964341 sample61 0.0577604571 -0.0326112099 sample62 -0.0313318464 0.0224391756 sample63 -0.0233625220 0.0125110562 sample64 -0.0086426068 0.0148770341 sample65 0.0025256193 -0.0404466327 sample66 0.0006014071 -0.0471576264 sample67 0.0706087042 0.0516228406 sample68 0.0082301011 0.0033109509 sample69 -0.0475076743 0.0001452708 sample70 -0.0600773716 0.0089986962 sample71 -0.0096321627 -0.0050761187 sample72 -0.0031773546 -0.0166221542 sample73 -0.0113700517 -0.0191726684 sample74 -0.0014179662 -0.0608101325 sample75 0.0041911740 -0.0399981269 sample76 -0.0055326449 0.0353114263 sample77 -0.0260214459 0.0305731380 sample78 -0.0119267436 0.0632236007 sample79 0.0186017239 0.0027402910 sample80 0.0241047889 -0.0472697181 sample81 -0.0220288317 -0.0079577210 sample82 -0.0180751258 0.0639051029 sample83 -0.0256671713 -0.0125898269 sample84 0.0161392598 -0.0567222449 sample85 0.0139988188 0.0322763454 sample86 -0.0198382995 0.0389225776 sample87 0.0266270281 -0.0032979996 sample88 0.0515677078 0.0117902495 sample89 0.0014022125 -0.0140510488 sample90 -0.0375949749 0.0044004551 sample91 0.0310397965 0.0440610926 sample92 0.0270570567 0.0324380452 sample93 -0.0215009202 0.0063993941 sample94 -0.0415702912 -0.0037692077 sample95 -0.0168416047 0.0010019120 sample96 -0.0285582661 -0.0187991000 sample97 -0.0490843868 -0.0266760748 sample98 -0.0171579033 -0.0112897471 sample99 -0.0271316525 0.0232395583 sample100 -0.0301789816 0.0305498693 sample101 -0.0264371151 0.0170723968 sample102 0.0012767734 -0.0248949597 sample103 0.0055214687 -0.0030040587 sample104 0.0251346074 -0.0165212671 sample105 0.0062424215 -0.0400309901 sample106 0.0069768684 0.0154982315 sample107 -0.0315912602 -0.0118883820 sample108 -0.0109690679 0.0023637162 sample109 -0.0014762845 0.0165583675 sample110 0.0036971063 0.0168260726 sample111 -0.0071624739 -0.0345651461 sample112 0.0046098120 -0.0048009350 sample113 0.0082236008 -0.0383233357 sample114 -0.0293642209 -0.0165595240 sample115 -0.0003260453 0.0135805368 sample116 0.0183575759 0.0665377581 sample117 0.0227640036 -0.0012287760 sample118 0.0015695248 0.0472617382 sample119 0.0190084932 0.0590034062 sample120 -0.0449645755 0.0072755697 sample121 0.0077307184 0.0104738937 sample122 -0.0027132063 -0.0394983138 sample123 0.0016959300 0.0028593594 sample124 -0.0365091615 0.0040382925 sample125 -0.0053658663 -0.0316029164 sample126 -0.0458032408 0.0019165544 sample127 -0.0494064872 0.0088209044 sample128 -0.0155454766 0.0186819802 sample129 -0.0184340400 0.0038684312 sample130 -0.0303640987 -0.0052225766 sample131 -0.0088697422 0.0156339713 sample132 -0.0433916471 -0.0154075483 sample133 0.0204029276 -0.0282209049 sample134 0.0175513332 0.0262883962 sample135 0.0029009925 0.0017003151 sample136 -0.0367997573 -0.0072249751 sample137 -0.0348600323 0.0075400273 sample138 -0.0044063824 -0.0053752428 sample139 0.0073103935 0.0308956174 sample140 0.0039925654 -0.0167019605 sample141 -0.0184093462 -0.0387953445 sample142 0.0268670676 -0.0239229634 sample143 0.0421049126 -0.0110888235 sample144 0.0017253664 -0.0341766012 sample145 0.0681741320 -0.0073526377 sample146 -0.0239965222 0.0118396767 sample147 -0.0063453522 0.0183130585 sample148 0.0230825251 -0.0379753037 sample149 0.0223298673 0.0188909118 sample150 0.0055709108 0.0174179009 sample151 0.0039177786 -0.0233533275 sample152 0.0134325667 0.0302344591 sample153 0.0511990309 0.0730230140 sample154 0.0006698324 0.0154177486 sample155 0.0032926626 -0.0288651601 sample156 -0.0016463495 -0.0474657733 sample157 -0.0045857599 0.0154934573 sample158 0.0201775524 -0.0332982124 sample159 -0.0086909001 0.0073496711 sample160 0.0295437331 -0.0555734536 sample161 0.0332754288 0.0033779619 sample162 0.0121954537 0.0433540412 sample163 -0.0173490933 0.0227219128 sample164 0.0143374783 -0.0453542590 sample165 0.0343612593 -0.0511194536 sample166 -0.0157536004 0.0094621170 sample167 -0.0179654624 -0.0006982358 sample168 -0.0033829919 0.0060747155 sample169 0.0116231468 -0.0015112800 > > ## 3.3 Plotting VAF > > # DISCO-SCA plotVAF > plotVAF(discoRes) > > # JIVE plotVAF > plotVAF(jiveRes) > > > ######################### > ## PART 4. Plot Results > > # Scores for common part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. JIVE > plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. O2PLS. > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common part. O2PLS. > plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common", + combined=TRUE,block="",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Combined plot of scores for common part. DISCO. > plotRes(object=discoRes,comps=c(1,1),what="scores",type="common", + combined=TRUE,block="",color="classname") Warning message: In plotRes(object = discoRes, comps = c(1, 1), what = "scores", : It is not possible to combine common components in DISCO-SCA approach. > > > # Scores for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for distinctive part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual", + combined=TRUE,block="",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block) > p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=TRUE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=TRUE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=TRUE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=TRUE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Loadings for common part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > # Combined plot for loadings for common part. DISCO-SCA. > plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=TRUE,block="",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Loadings for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > # Combined plot for loadings for distinctive part > plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=TRUE,block="",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Combined plot for common and distinctive part (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=TRUE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=TRUE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > ######################### > ## PART 5. Biplot results > > ## Common components DISCO-SCA > biplotRes(object=discoRes,type="common",comps=c(1,2),block="",title=NULL, + colorCol="classname",sizeValues=c(2,4),shapeValues=c(17,0), + background=TRUE,pointSize=4,labelSize=NULL,axisSize=NULL, + titleSize=NULL) > > > ## Common components O2PLS > p1 <- biplotRes(object=o2plsRes,type="common",comps=c(1,2),block="expr",title=NULL, + colorCol="classname",sizeValues=c(2,4),shapeValues=c(17,0), + background=TRUE,pointSize=4,labelSize=NULL,axisSize=NULL, + titleSize=NULL) Warning message: In data.row.names(row.names, rowsi, i) : some row.names duplicated: 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338 --> row.names NOT used > p2 <- biplotRes(object=o2plsRes,type="common",comps=c(1,2),block="mirna",title=NULL, + colorCol="classname",sizeValues=c(2,4),shapeValues=c(17,0), + background=TRUE,pointSize=4,labelSize=NULL,axisSize=NULL,titleSize=NULL) Warning message: In data.row.names(row.names, rowsi, i) : some row.names duplicated: 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338 --> row.names NOT used > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > ## Distintive components DISCO-SCA > p1 <- biplotRes(object=discoRes,type="individual",comps=c(1,2),block="expr",title=NULL, + colorCol="classname",sizeValues=c(2,4),shapeValues=c(17,0), + background=TRUE,pointSize=4,labelSize=NULL,axisSize=NULL, + titleSize=NULL) Warning message: In data.row.names(row.names, rowsi, i) : some row.names duplicated: 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338 --> row.names NOT used > p2 <- biplotRes(object=discoRes,type="individual",comps=c(1,2),block="mirna",title=NULL, + colorCol="classname",sizeValues=c(2,4),shapeValues=c(17,0), + background=TRUE,pointSize=4,labelSize=NULL,axisSize=NULL, + titleSize=NULL) Warning message: In data.row.names(row.names, rowsi, i) : some row.names duplicated: 170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338 --> row.names NOT used > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > > > proc.time() user system elapsed 19.78 0.39 20.29 |
STATegRa.Rcheck/examples_i386/STATegRa-Ex.timings
|
STATegRa.Rcheck/examples_x64/STATegRa-Ex.timings
|