Back to Multiple platform build/check report for BioC 3.23:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-12-05 11:35 -0500 (Fri, 05 Dec 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" 4869
kjohnson3macOS 13.7.7 Venturaarm64R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" 4576
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 253/2331HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.75.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-12-04 13:40 -0500 (Thu, 04 Dec 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: ecdbf23
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published


CHECK results for BufferedMatrix on kjohnson3

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.75.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.75.0.tar.gz
StartedAt: 2025-12-04 18:48:24 -0500 (Thu, 04 Dec 2025)
EndedAt: 2025-12-04 18:48:45 -0500 (Thu, 04 Dec 2025)
EllapsedTime: 21.3 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.75.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck’
* using R Under development (unstable) (2025-11-04 r88984)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 16.0.0 (clang-1600.0.26.6)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.8
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.75.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 15.0.0 (clang-1500.1.0.2.5)’
* used SDK: ‘MacOSX11.3.1.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... INFO
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 1 NOTE
See
  ‘/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.75.0’
** using staged installation
** libs
using C compiler: ‘Apple clang version 15.0.0 (clang-1500.1.0.2.5)’
using SDK: ‘MacOSX11.3.1.sdk’
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch arm64 -std=gnu2x -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/arm64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R
installing to /Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.137   0.056   0.189 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 481248 25.8    1058085 56.6         NA   633817 33.9
Vcells 891449  6.9    8388608 64.0     196608  2110969 16.2
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Thu Dec  4 18:48:36 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Thu Dec  4 18:48:36 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x600000210000>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Thu Dec  4 18:48:38 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Thu Dec  4 18:48:38 2025"
> 
> ColMode(tmp2)
<pointer: 0x600000210000>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]       [,2]       [,3]       [,4]
[1,] 98.7642903  0.1897793 -0.1482155  0.8201393
[2,]  0.4378982 -0.0737965  1.0527874  0.9648113
[3,] -1.1015087  1.1855015  0.4364109 -2.0158984
[4,]  1.1493039  1.0404947 -1.3411910  1.7505718
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 98.7642903 0.1897793 0.1482155 0.8201393
[2,]  0.4378982 0.0737965 1.0527874 0.9648113
[3,]  1.1015087 1.1855015 0.4364109 2.0158984
[4,]  1.1493039 1.0404947 1.3411910 1.7505718
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9380225 0.4356367 0.3849877 0.9056154
[2,] 0.6617387 0.2716551 1.0260543 0.9822481
[3,] 1.0495279 1.0888074 0.6606140 1.4198234
[4,] 1.0720559 1.0200464 1.1580980 1.3230918
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 223.14451 29.54615 28.99809 34.87629
[2,]  32.05529 27.79035 36.31333 35.78729
[3,]  36.59679 37.07358 32.04255 41.21413
[4,]  36.86986 36.24096 37.92217 39.98149
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x600000238000>
> exp(tmp5)
<pointer: 0x600000238000>
> log(tmp5,2)
<pointer: 0x600000238000>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 464.4461
> Min(tmp5)
[1] 54.19512
> mean(tmp5)
[1] 73.24175
> Sum(tmp5)
[1] 14648.35
> Var(tmp5)
[1] 848.5076
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 89.66264 70.32930 74.63659 72.49730 70.37032 70.37413 72.63620 71.35203
 [9] 70.49564 70.06339
> rowSums(tmp5)
 [1] 1793.253 1406.586 1492.732 1449.946 1407.406 1407.483 1452.724 1427.041
 [9] 1409.913 1401.268
> rowVars(tmp5)
 [1] 7837.74044   66.00258   60.63410   96.36673   45.42177   85.78475
 [7]   75.49980  104.25725   83.39016   96.45342
> rowSd(tmp5)
 [1] 88.531014  8.124197  7.786790  9.816656  6.739568  9.262006  8.689062
 [8] 10.210644  9.131821  9.821070
> rowMax(tmp5)
 [1] 464.44607  87.55506  91.83984  92.65651  83.12248  88.75235  89.92293
 [8]  91.90345  92.59345  86.19093
> rowMin(tmp5)
 [1] 54.50780 57.84197 59.65993 54.30103 57.49493 55.27826 59.13687 54.19512
 [9] 58.37813 54.61170
> 
> colMeans(tmp5)
 [1] 111.85926  73.50354  68.26581  71.18631  70.35170  73.03868  71.22219
 [8]  72.10972  71.73866  65.80161  74.62088  67.90046  67.01572  74.67762
[15]  73.06211  77.10972  69.41920  71.97441  66.85535  73.12210
> colSums(tmp5)
 [1] 1118.5926  735.0354  682.6581  711.8631  703.5170  730.3868  712.2219
 [8]  721.0972  717.3866  658.0161  746.2088  679.0046  670.1572  746.7762
[15]  730.6211  771.0972  694.1920  719.7441  668.5535  731.2210
> colVars(tmp5)
 [1] 15404.54566   109.78959    45.11721    90.92647   134.12336    29.81752
 [7]    46.68425    93.75665    36.86749    47.54528   114.30873    93.86332
[13]    59.12886   139.58900    84.86013    72.24841    31.68627    88.19510
[19]    66.15133    44.46015
> colSd(tmp5)
 [1] 124.115050  10.478053   6.716935   9.535537  11.581164   5.460542
 [7]   6.832588   9.682802   6.071860   6.895309  10.691526   9.688308
[13]   7.689529  11.814779   9.211956   8.499907   5.629056   9.391224
[19]   8.133347   6.667845
> colMax(tmp5)
 [1] 464.44607  91.90345  78.93003  85.78182  92.65651  81.73106  79.06930
 [8]  83.94522  80.27579  79.13322  89.92293  84.65973  79.24259  91.83984
[15]  88.55440  92.59345  77.15139  86.96129  83.23689  86.19093
> colMin(tmp5)
 [1] 61.94639 57.84197 57.71452 59.48487 55.27826 66.20580 57.49493 54.19512
 [9] 62.16419 54.30103 58.17791 55.70338 54.50780 54.61170 61.64947 66.15129
[17] 59.11337 54.87706 58.39381 64.70543
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 89.66264 70.32930 74.63659       NA 70.37032 70.37413 72.63620 71.35203
 [9] 70.49564 70.06339
> rowSums(tmp5)
 [1] 1793.253 1406.586 1492.732       NA 1407.406 1407.483 1452.724 1427.041
 [9] 1409.913 1401.268
> rowVars(tmp5)
 [1] 7837.74044   66.00258   60.63410   82.35763   45.42177   85.78475
 [7]   75.49980  104.25725   83.39016   96.45342
> rowSd(tmp5)
 [1] 88.531014  8.124197  7.786790  9.075111  6.739568  9.262006  8.689062
 [8] 10.210644  9.131821  9.821070
> rowMax(tmp5)
 [1] 464.44607  87.55506  91.83984        NA  83.12248  88.75235  89.92293
 [8]  91.90345  92.59345  86.19093
> rowMin(tmp5)
 [1] 54.50780 57.84197 59.65993       NA 57.49493 55.27826 59.13687 54.19512
 [9] 58.37813 54.61170
> 
> colMeans(tmp5)
 [1] 111.85926  73.50354  68.26581  71.18631  70.35170  73.03868  71.22219
 [8]  72.10972  71.73866        NA  74.62088  67.90046  67.01572  74.67762
[15]  73.06211  77.10972  69.41920  71.97441  66.85535  73.12210
> colSums(tmp5)
 [1] 1118.5926  735.0354  682.6581  711.8631  703.5170  730.3868  712.2219
 [8]  721.0972  717.3866        NA  746.2088  679.0046  670.1572  746.7762
[15]  730.6211  771.0972  694.1920  719.7441  668.5535  731.2210
> colVars(tmp5)
 [1] 15404.54566   109.78959    45.11721    90.92647   134.12336    29.81752
 [7]    46.68425    93.75665    36.86749          NA   114.30873    93.86332
[13]    59.12886   139.58900    84.86013    72.24841    31.68627    88.19510
[19]    66.15133    44.46015
> colSd(tmp5)
 [1] 124.115050  10.478053   6.716935   9.535537  11.581164   5.460542
 [7]   6.832588   9.682802   6.071860         NA  10.691526   9.688308
[13]   7.689529  11.814779   9.211956   8.499907   5.629056   9.391224
[19]   8.133347   6.667845
> colMax(tmp5)
 [1] 464.44607  91.90345  78.93003  85.78182  92.65651  81.73106  79.06930
 [8]  83.94522  80.27579        NA  89.92293  84.65973  79.24259  91.83984
[15]  88.55440  92.59345  77.15139  86.96129  83.23689  86.19093
> colMin(tmp5)
 [1] 61.94639 57.84197 57.71452 59.48487 55.27826 66.20580 57.49493 54.19512
 [9] 62.16419       NA 58.17791 55.70338 54.50780 54.61170 61.64947 66.15129
[17] 59.11337 54.87706 58.39381 64.70543
> 
> Max(tmp5,na.rm=TRUE)
[1] 464.4461
> Min(tmp5,na.rm=TRUE)
[1] 54.19512
> mean(tmp5,na.rm=TRUE)
[1] 73.33693
> Sum(tmp5,na.rm=TRUE)
[1] 14594.05
> Var(tmp5,na.rm=TRUE)
[1] 850.972
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.66264 70.32930 74.63659 73.45499 70.37032 70.37413 72.63620 71.35203
 [9] 70.49564 70.06339
> rowSums(tmp5,na.rm=TRUE)
 [1] 1793.253 1406.586 1492.732 1395.645 1407.406 1407.483 1452.724 1427.041
 [9] 1409.913 1401.268
> rowVars(tmp5,na.rm=TRUE)
 [1] 7837.74044   66.00258   60.63410   82.35763   45.42177   85.78475
 [7]   75.49980  104.25725   83.39016   96.45342
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.531014  8.124197  7.786790  9.075111  6.739568  9.262006  8.689062
 [8] 10.210644  9.131821  9.821070
> rowMax(tmp5,na.rm=TRUE)
 [1] 464.44607  87.55506  91.83984  92.65651  83.12248  88.75235  89.92293
 [8]  91.90345  92.59345  86.19093
> rowMin(tmp5,na.rm=TRUE)
 [1] 54.50780 57.84197 59.65993 58.78898 57.49493 55.27826 59.13687 54.19512
 [9] 58.37813 54.61170
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 111.85926  73.50354  68.26581  71.18631  70.35170  73.03868  71.22219
 [8]  72.10972  71.73866  67.07945  74.62088  67.90046  67.01572  74.67762
[15]  73.06211  77.10972  69.41920  71.97441  66.85535  73.12210
> colSums(tmp5,na.rm=TRUE)
 [1] 1118.5926  735.0354  682.6581  711.8631  703.5170  730.3868  712.2219
 [8]  721.0972  717.3866  603.7150  746.2088  679.0046  670.1572  746.7762
[15]  730.6211  771.0972  694.1920  719.7441  668.5535  731.2210
> colVars(tmp5,na.rm=TRUE)
 [1] 15404.54566   109.78959    45.11721    90.92647   134.12336    29.81752
 [7]    46.68425    93.75665    36.86749    35.11856   114.30873    93.86332
[13]    59.12886   139.58900    84.86013    72.24841    31.68627    88.19510
[19]    66.15133    44.46015
> colSd(tmp5,na.rm=TRUE)
 [1] 124.115050  10.478053   6.716935   9.535537  11.581164   5.460542
 [7]   6.832588   9.682802   6.071860   5.926091  10.691526   9.688308
[13]   7.689529  11.814779   9.211956   8.499907   5.629056   9.391224
[19]   8.133347   6.667845
> colMax(tmp5,na.rm=TRUE)
 [1] 464.44607  91.90345  78.93003  85.78182  92.65651  81.73106  79.06930
 [8]  83.94522  80.27579  79.13322  89.92293  84.65973  79.24259  91.83984
[15]  88.55440  92.59345  77.15139  86.96129  83.23689  86.19093
> colMin(tmp5,na.rm=TRUE)
 [1] 61.94639 57.84197 57.71452 59.48487 55.27826 66.20580 57.49493 54.19512
 [9] 62.16419 60.76462 58.17791 55.70338 54.50780 54.61170 61.64947 66.15129
[17] 59.11337 54.87706 58.39381 64.70543
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.66264 70.32930 74.63659      NaN 70.37032 70.37413 72.63620 71.35203
 [9] 70.49564 70.06339
> rowSums(tmp5,na.rm=TRUE)
 [1] 1793.253 1406.586 1492.732    0.000 1407.406 1407.483 1452.724 1427.041
 [9] 1409.913 1401.268
> rowVars(tmp5,na.rm=TRUE)
 [1] 7837.74044   66.00258   60.63410         NA   45.42177   85.78475
 [7]   75.49980  104.25725   83.39016   96.45342
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.531014  8.124197  7.786790        NA  6.739568  9.262006  8.689062
 [8] 10.210644  9.131821  9.821070
> rowMax(tmp5,na.rm=TRUE)
 [1] 464.44607  87.55506  91.83984        NA  83.12248  88.75235  89.92293
 [8]  91.90345  92.59345  86.19093
> rowMin(tmp5,na.rm=TRUE)
 [1] 54.50780 57.84197 59.65993       NA 57.49493 55.27826 59.13687 54.19512
 [9] 58.37813 54.61170
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 115.76142  73.28940  67.08090  69.84966  67.87338  73.55847  70.35029
 [8]  73.58980  72.31383       NaN  76.37550  68.86713  65.87902  73.94440
[15]  72.57731  77.47332  69.65173  70.86023  66.48880  73.62537
> colSums(tmp5,na.rm=TRUE)
 [1] 1041.8528  659.6046  603.7281  628.6469  610.8604  662.0262  633.1526
 [8]  662.3082  650.8244    0.0000  687.3795  619.8042  592.9112  665.4996
[15]  653.1958  697.2598  626.8656  637.7420  598.3992  662.6283
> colVars(tmp5,na.rm=TRUE)
 [1] 17158.81151   122.99740    34.96165    82.19243    81.79088    30.50520
 [7]    43.96740    80.83148    37.75429          NA    93.96207    95.08361
[13]    51.98423   150.98952    92.82352    79.79220    35.03872    85.25360
[19]    72.90871    47.16833
> colSd(tmp5,na.rm=TRUE)
 [1] 130.991647  11.090419   5.912838   9.066004   9.043831   5.523151
 [7]   6.630792   8.990633   6.144452         NA   9.693403   9.751083
[13]   7.210009  12.287779   9.634496   8.932648   5.919352   9.233288
[19]   8.538660   6.867921
> colMax(tmp5,na.rm=TRUE)
 [1] 464.44607  91.90345  75.58144  85.78182  79.48200  81.73106  78.53255
 [8]  83.94522  80.27579      -Inf  89.92293  84.65973  79.24259  91.83984
[15]  88.55440  92.59345  77.15139  86.96129  83.23689  86.19093
> colMin(tmp5,na.rm=TRUE)
 [1] 61.94639 57.84197 57.71452 59.48487 55.27826 66.20580 57.49493 54.19512
 [9] 62.16419      Inf 58.17791 55.70338 54.50780 54.61170 61.64947 66.15129
[17] 59.11337 54.87706 58.39381 64.70543
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 243.7503 175.4635 186.2708 148.8374 160.4924 211.4050 320.8500 280.9353
 [9] 186.0200 175.7828
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 243.7503 175.4635 186.2708 148.8374 160.4924 211.4050 320.8500 280.9353
 [9] 186.0200 175.7828
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  2.842171e-14  5.684342e-14 -8.526513e-14  1.989520e-13  1.278977e-13
 [6]  5.684342e-14 -2.842171e-14  7.105427e-14  0.000000e+00  0.000000e+00
[11]  8.526513e-14  0.000000e+00 -5.684342e-14  5.684342e-14  1.136868e-13
[16] -2.842171e-14  5.684342e-14  2.842171e-13  5.684342e-14 -5.684342e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
6   6 
5   18 
9   17 
5   12 
7   11 
10   5 
8   20 
4   14 
5   16 
2   13 
9   3 
4   6 
5   16 
4   3 
10   14 
4   14 
5   11 
4   2 
8   19 
7   13 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.093358
> Min(tmp)
[1] -2.053889
> mean(tmp)
[1] -0.02345406
> Sum(tmp)
[1] -2.345406
> Var(tmp)
[1] 0.9968427
> 
> rowMeans(tmp)
[1] -0.02345406
> rowSums(tmp)
[1] -2.345406
> rowVars(tmp)
[1] 0.9968427
> rowSd(tmp)
[1] 0.9984201
> rowMax(tmp)
[1] 2.093358
> rowMin(tmp)
[1] -2.053889
> 
> colMeans(tmp)
  [1] -0.008163278 -1.847185143 -0.161076469 -1.125733020  1.242663628
  [6] -0.704624968  1.481511562  0.340518274 -0.110566707  0.114855108
 [11]  0.886071693 -0.245377857  0.040252933 -1.262575407  0.878203537
 [16] -1.591291949  2.093358305 -1.630187072 -1.459122367  1.623101774
 [21] -1.056218220 -0.451311153 -0.794058244  0.512825119  0.230756728
 [26]  0.632210530 -0.675849171 -1.273366840  1.931276662  0.501719996
 [31] -1.152804434 -0.726305992 -0.617229533 -0.402280609 -0.309795597
 [36]  0.915905431  0.641770800 -1.244510979  1.745020643  0.892741905
 [41] -0.725602449 -1.292459447 -0.233607058  0.889066332  0.021621393
 [46] -1.640323047  0.370883608 -0.020939504  0.994656444 -2.053889399
 [51] -0.689125688  0.318880354  0.980692041 -0.095923088 -0.893783683
 [56] -1.240778422 -0.108892763 -1.778107287 -1.033266179 -0.848450481
 [61] -0.053619909 -1.941473206  0.830796878  0.833167586 -0.486715639
 [66]  0.002745860 -0.346044994  1.004165893 -0.912615684  1.450132649
 [71] -0.970068754 -0.115451155  0.113746496  0.755783334 -0.161121132
 [76] -1.928157615 -0.163720314  1.316651254  1.958736650  0.442263297
 [81]  0.372797422  1.208746024  0.882022153  0.004807218  1.381367313
 [86]  1.565379986 -0.291269955  1.520294518  0.105969530  0.999530476
 [91] -1.116321410 -0.614719148 -0.440026656 -0.088173938 -0.544042950
 [96]  0.384654455  0.648361149  0.945312650  0.082593525  0.242329138
> colSums(tmp)
  [1] -0.008163278 -1.847185143 -0.161076469 -1.125733020  1.242663628
  [6] -0.704624968  1.481511562  0.340518274 -0.110566707  0.114855108
 [11]  0.886071693 -0.245377857  0.040252933 -1.262575407  0.878203537
 [16] -1.591291949  2.093358305 -1.630187072 -1.459122367  1.623101774
 [21] -1.056218220 -0.451311153 -0.794058244  0.512825119  0.230756728
 [26]  0.632210530 -0.675849171 -1.273366840  1.931276662  0.501719996
 [31] -1.152804434 -0.726305992 -0.617229533 -0.402280609 -0.309795597
 [36]  0.915905431  0.641770800 -1.244510979  1.745020643  0.892741905
 [41] -0.725602449 -1.292459447 -0.233607058  0.889066332  0.021621393
 [46] -1.640323047  0.370883608 -0.020939504  0.994656444 -2.053889399
 [51] -0.689125688  0.318880354  0.980692041 -0.095923088 -0.893783683
 [56] -1.240778422 -0.108892763 -1.778107287 -1.033266179 -0.848450481
 [61] -0.053619909 -1.941473206  0.830796878  0.833167586 -0.486715639
 [66]  0.002745860 -0.346044994  1.004165893 -0.912615684  1.450132649
 [71] -0.970068754 -0.115451155  0.113746496  0.755783334 -0.161121132
 [76] -1.928157615 -0.163720314  1.316651254  1.958736650  0.442263297
 [81]  0.372797422  1.208746024  0.882022153  0.004807218  1.381367313
 [86]  1.565379986 -0.291269955  1.520294518  0.105969530  0.999530476
 [91] -1.116321410 -0.614719148 -0.440026656 -0.088173938 -0.544042950
 [96]  0.384654455  0.648361149  0.945312650  0.082593525  0.242329138
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.008163278 -1.847185143 -0.161076469 -1.125733020  1.242663628
  [6] -0.704624968  1.481511562  0.340518274 -0.110566707  0.114855108
 [11]  0.886071693 -0.245377857  0.040252933 -1.262575407  0.878203537
 [16] -1.591291949  2.093358305 -1.630187072 -1.459122367  1.623101774
 [21] -1.056218220 -0.451311153 -0.794058244  0.512825119  0.230756728
 [26]  0.632210530 -0.675849171 -1.273366840  1.931276662  0.501719996
 [31] -1.152804434 -0.726305992 -0.617229533 -0.402280609 -0.309795597
 [36]  0.915905431  0.641770800 -1.244510979  1.745020643  0.892741905
 [41] -0.725602449 -1.292459447 -0.233607058  0.889066332  0.021621393
 [46] -1.640323047  0.370883608 -0.020939504  0.994656444 -2.053889399
 [51] -0.689125688  0.318880354  0.980692041 -0.095923088 -0.893783683
 [56] -1.240778422 -0.108892763 -1.778107287 -1.033266179 -0.848450481
 [61] -0.053619909 -1.941473206  0.830796878  0.833167586 -0.486715639
 [66]  0.002745860 -0.346044994  1.004165893 -0.912615684  1.450132649
 [71] -0.970068754 -0.115451155  0.113746496  0.755783334 -0.161121132
 [76] -1.928157615 -0.163720314  1.316651254  1.958736650  0.442263297
 [81]  0.372797422  1.208746024  0.882022153  0.004807218  1.381367313
 [86]  1.565379986 -0.291269955  1.520294518  0.105969530  0.999530476
 [91] -1.116321410 -0.614719148 -0.440026656 -0.088173938 -0.544042950
 [96]  0.384654455  0.648361149  0.945312650  0.082593525  0.242329138
> colMin(tmp)
  [1] -0.008163278 -1.847185143 -0.161076469 -1.125733020  1.242663628
  [6] -0.704624968  1.481511562  0.340518274 -0.110566707  0.114855108
 [11]  0.886071693 -0.245377857  0.040252933 -1.262575407  0.878203537
 [16] -1.591291949  2.093358305 -1.630187072 -1.459122367  1.623101774
 [21] -1.056218220 -0.451311153 -0.794058244  0.512825119  0.230756728
 [26]  0.632210530 -0.675849171 -1.273366840  1.931276662  0.501719996
 [31] -1.152804434 -0.726305992 -0.617229533 -0.402280609 -0.309795597
 [36]  0.915905431  0.641770800 -1.244510979  1.745020643  0.892741905
 [41] -0.725602449 -1.292459447 -0.233607058  0.889066332  0.021621393
 [46] -1.640323047  0.370883608 -0.020939504  0.994656444 -2.053889399
 [51] -0.689125688  0.318880354  0.980692041 -0.095923088 -0.893783683
 [56] -1.240778422 -0.108892763 -1.778107287 -1.033266179 -0.848450481
 [61] -0.053619909 -1.941473206  0.830796878  0.833167586 -0.486715639
 [66]  0.002745860 -0.346044994  1.004165893 -0.912615684  1.450132649
 [71] -0.970068754 -0.115451155  0.113746496  0.755783334 -0.161121132
 [76] -1.928157615 -0.163720314  1.316651254  1.958736650  0.442263297
 [81]  0.372797422  1.208746024  0.882022153  0.004807218  1.381367313
 [86]  1.565379986 -0.291269955  1.520294518  0.105969530  0.999530476
 [91] -1.116321410 -0.614719148 -0.440026656 -0.088173938 -0.544042950
 [96]  0.384654455  0.648361149  0.945312650  0.082593525  0.242329138
> colMedians(tmp)
  [1] -0.008163278 -1.847185143 -0.161076469 -1.125733020  1.242663628
  [6] -0.704624968  1.481511562  0.340518274 -0.110566707  0.114855108
 [11]  0.886071693 -0.245377857  0.040252933 -1.262575407  0.878203537
 [16] -1.591291949  2.093358305 -1.630187072 -1.459122367  1.623101774
 [21] -1.056218220 -0.451311153 -0.794058244  0.512825119  0.230756728
 [26]  0.632210530 -0.675849171 -1.273366840  1.931276662  0.501719996
 [31] -1.152804434 -0.726305992 -0.617229533 -0.402280609 -0.309795597
 [36]  0.915905431  0.641770800 -1.244510979  1.745020643  0.892741905
 [41] -0.725602449 -1.292459447 -0.233607058  0.889066332  0.021621393
 [46] -1.640323047  0.370883608 -0.020939504  0.994656444 -2.053889399
 [51] -0.689125688  0.318880354  0.980692041 -0.095923088 -0.893783683
 [56] -1.240778422 -0.108892763 -1.778107287 -1.033266179 -0.848450481
 [61] -0.053619909 -1.941473206  0.830796878  0.833167586 -0.486715639
 [66]  0.002745860 -0.346044994  1.004165893 -0.912615684  1.450132649
 [71] -0.970068754 -0.115451155  0.113746496  0.755783334 -0.161121132
 [76] -1.928157615 -0.163720314  1.316651254  1.958736650  0.442263297
 [81]  0.372797422  1.208746024  0.882022153  0.004807218  1.381367313
 [86]  1.565379986 -0.291269955  1.520294518  0.105969530  0.999530476
 [91] -1.116321410 -0.614719148 -0.440026656 -0.088173938 -0.544042950
 [96]  0.384654455  0.648361149  0.945312650  0.082593525  0.242329138
> colRanges(tmp)
             [,1]      [,2]       [,3]      [,4]     [,5]      [,6]     [,7]
[1,] -0.008163278 -1.847185 -0.1610765 -1.125733 1.242664 -0.704625 1.481512
[2,] -0.008163278 -1.847185 -0.1610765 -1.125733 1.242664 -0.704625 1.481512
          [,8]       [,9]     [,10]     [,11]      [,12]      [,13]     [,14]
[1,] 0.3405183 -0.1105667 0.1148551 0.8860717 -0.2453779 0.04025293 -1.262575
[2,] 0.3405183 -0.1105667 0.1148551 0.8860717 -0.2453779 0.04025293 -1.262575
         [,15]     [,16]    [,17]     [,18]     [,19]    [,20]     [,21]
[1,] 0.8782035 -1.591292 2.093358 -1.630187 -1.459122 1.623102 -1.056218
[2,] 0.8782035 -1.591292 2.093358 -1.630187 -1.459122 1.623102 -1.056218
          [,22]      [,23]     [,24]     [,25]     [,26]      [,27]     [,28]
[1,] -0.4513112 -0.7940582 0.5128251 0.2307567 0.6322105 -0.6758492 -1.273367
[2,] -0.4513112 -0.7940582 0.5128251 0.2307567 0.6322105 -0.6758492 -1.273367
        [,29]   [,30]     [,31]     [,32]      [,33]      [,34]      [,35]
[1,] 1.931277 0.50172 -1.152804 -0.726306 -0.6172295 -0.4022806 -0.3097956
[2,] 1.931277 0.50172 -1.152804 -0.726306 -0.6172295 -0.4022806 -0.3097956
         [,36]     [,37]     [,38]    [,39]     [,40]      [,41]     [,42]
[1,] 0.9159054 0.6417708 -1.244511 1.745021 0.8927419 -0.7256024 -1.292459
[2,] 0.9159054 0.6417708 -1.244511 1.745021 0.8927419 -0.7256024 -1.292459
          [,43]     [,44]      [,45]     [,46]     [,47]      [,48]     [,49]
[1,] -0.2336071 0.8890663 0.02162139 -1.640323 0.3708836 -0.0209395 0.9946564
[2,] -0.2336071 0.8890663 0.02162139 -1.640323 0.3708836 -0.0209395 0.9946564
         [,50]      [,51]     [,52]    [,53]       [,54]      [,55]     [,56]
[1,] -2.053889 -0.6891257 0.3188804 0.980692 -0.09592309 -0.8937837 -1.240778
[2,] -2.053889 -0.6891257 0.3188804 0.980692 -0.09592309 -0.8937837 -1.240778
          [,57]     [,58]     [,59]      [,60]       [,61]     [,62]     [,63]
[1,] -0.1088928 -1.778107 -1.033266 -0.8484505 -0.05361991 -1.941473 0.8307969
[2,] -0.1088928 -1.778107 -1.033266 -0.8484505 -0.05361991 -1.941473 0.8307969
         [,64]      [,65]      [,66]     [,67]    [,68]      [,69]    [,70]
[1,] 0.8331676 -0.4867156 0.00274586 -0.346045 1.004166 -0.9126157 1.450133
[2,] 0.8331676 -0.4867156 0.00274586 -0.346045 1.004166 -0.9126157 1.450133
          [,71]      [,72]     [,73]     [,74]      [,75]     [,76]      [,77]
[1,] -0.9700688 -0.1154512 0.1137465 0.7557833 -0.1611211 -1.928158 -0.1637203
[2,] -0.9700688 -0.1154512 0.1137465 0.7557833 -0.1611211 -1.928158 -0.1637203
        [,78]    [,79]     [,80]     [,81]    [,82]     [,83]       [,84]
[1,] 1.316651 1.958737 0.4422633 0.3727974 1.208746 0.8820222 0.004807218
[2,] 1.316651 1.958737 0.4422633 0.3727974 1.208746 0.8820222 0.004807218
        [,85]   [,86]    [,87]    [,88]     [,89]     [,90]     [,91]
[1,] 1.381367 1.56538 -0.29127 1.520295 0.1059695 0.9995305 -1.116321
[2,] 1.381367 1.56538 -0.29127 1.520295 0.1059695 0.9995305 -1.116321
          [,92]      [,93]       [,94]     [,95]     [,96]     [,97]     [,98]
[1,] -0.6147191 -0.4400267 -0.08817394 -0.544043 0.3846545 0.6483611 0.9453127
[2,] -0.6147191 -0.4400267 -0.08817394 -0.544043 0.3846545 0.6483611 0.9453127
          [,99]    [,100]
[1,] 0.08259352 0.2423291
[2,] 0.08259352 0.2423291
> 
> 
> Max(tmp2)
[1] 2.032666
> Min(tmp2)
[1] -2.5946
> mean(tmp2)
[1] 0.01349105
> Sum(tmp2)
[1] 1.349105
> Var(tmp2)
[1] 0.8683963
> 
> rowMeans(tmp2)
  [1]  0.524009324 -0.882225554  0.715680156 -0.544043019  0.439243424
  [6]  0.328127387 -2.594599599 -1.559480263  0.178195602 -2.121714032
 [11] -0.260793016  0.819650390 -0.068638436  0.267628578 -0.217527512
 [16]  1.318137743  0.961816602  0.931544043 -0.879730474 -0.579926980
 [21]  1.139407879  0.855085667  1.275952988 -0.300860932 -1.258158294
 [26]  0.566638902  0.739126854 -0.730202022 -0.005211611  0.524076660
 [31] -0.671960529  1.134892033 -0.522201648 -0.856874394  0.276890145
 [36]  0.382801271  1.797163093 -0.945963173 -0.334950231 -0.672894601
 [41] -0.895221547  0.031820338 -1.014837956 -0.718821598  0.428146123
 [46]  0.173157791 -0.529115485  0.679782547 -0.025062964  0.686335145
 [51]  0.806544029 -0.976289168  0.589090872  2.032666343 -0.956645253
 [56]  0.659134779  0.242387088  1.070789896 -1.023490088 -1.550577452
 [61] -0.541246686  0.122996913  0.073654901 -0.488656571  0.075698076
 [66]  0.609860118 -0.703416833 -0.131279785  0.919786988  0.431128571
 [71] -0.594863318 -1.415263325 -0.166903492 -1.059470076 -0.265367349
 [76]  0.769063283  1.409637731  0.356557616  0.740967499  0.706463919
 [81]  0.635711472  1.977032678  1.387415329 -1.371813236  1.316975148
 [86]  1.579757878 -0.910255560 -1.088327841  0.176001838 -1.003037383
 [91]  0.583142459 -1.172302328 -1.283829438  1.072991270  1.214854884
 [96] -0.645852662 -0.437576439 -1.319367083  0.193302843  0.717027123
> rowSums(tmp2)
  [1]  0.524009324 -0.882225554  0.715680156 -0.544043019  0.439243424
  [6]  0.328127387 -2.594599599 -1.559480263  0.178195602 -2.121714032
 [11] -0.260793016  0.819650390 -0.068638436  0.267628578 -0.217527512
 [16]  1.318137743  0.961816602  0.931544043 -0.879730474 -0.579926980
 [21]  1.139407879  0.855085667  1.275952988 -0.300860932 -1.258158294
 [26]  0.566638902  0.739126854 -0.730202022 -0.005211611  0.524076660
 [31] -0.671960529  1.134892033 -0.522201648 -0.856874394  0.276890145
 [36]  0.382801271  1.797163093 -0.945963173 -0.334950231 -0.672894601
 [41] -0.895221547  0.031820338 -1.014837956 -0.718821598  0.428146123
 [46]  0.173157791 -0.529115485  0.679782547 -0.025062964  0.686335145
 [51]  0.806544029 -0.976289168  0.589090872  2.032666343 -0.956645253
 [56]  0.659134779  0.242387088  1.070789896 -1.023490088 -1.550577452
 [61] -0.541246686  0.122996913  0.073654901 -0.488656571  0.075698076
 [66]  0.609860118 -0.703416833 -0.131279785  0.919786988  0.431128571
 [71] -0.594863318 -1.415263325 -0.166903492 -1.059470076 -0.265367349
 [76]  0.769063283  1.409637731  0.356557616  0.740967499  0.706463919
 [81]  0.635711472  1.977032678  1.387415329 -1.371813236  1.316975148
 [86]  1.579757878 -0.910255560 -1.088327841  0.176001838 -1.003037383
 [91]  0.583142459 -1.172302328 -1.283829438  1.072991270  1.214854884
 [96] -0.645852662 -0.437576439 -1.319367083  0.193302843  0.717027123
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  0.524009324 -0.882225554  0.715680156 -0.544043019  0.439243424
  [6]  0.328127387 -2.594599599 -1.559480263  0.178195602 -2.121714032
 [11] -0.260793016  0.819650390 -0.068638436  0.267628578 -0.217527512
 [16]  1.318137743  0.961816602  0.931544043 -0.879730474 -0.579926980
 [21]  1.139407879  0.855085667  1.275952988 -0.300860932 -1.258158294
 [26]  0.566638902  0.739126854 -0.730202022 -0.005211611  0.524076660
 [31] -0.671960529  1.134892033 -0.522201648 -0.856874394  0.276890145
 [36]  0.382801271  1.797163093 -0.945963173 -0.334950231 -0.672894601
 [41] -0.895221547  0.031820338 -1.014837956 -0.718821598  0.428146123
 [46]  0.173157791 -0.529115485  0.679782547 -0.025062964  0.686335145
 [51]  0.806544029 -0.976289168  0.589090872  2.032666343 -0.956645253
 [56]  0.659134779  0.242387088  1.070789896 -1.023490088 -1.550577452
 [61] -0.541246686  0.122996913  0.073654901 -0.488656571  0.075698076
 [66]  0.609860118 -0.703416833 -0.131279785  0.919786988  0.431128571
 [71] -0.594863318 -1.415263325 -0.166903492 -1.059470076 -0.265367349
 [76]  0.769063283  1.409637731  0.356557616  0.740967499  0.706463919
 [81]  0.635711472  1.977032678  1.387415329 -1.371813236  1.316975148
 [86]  1.579757878 -0.910255560 -1.088327841  0.176001838 -1.003037383
 [91]  0.583142459 -1.172302328 -1.283829438  1.072991270  1.214854884
 [96] -0.645852662 -0.437576439 -1.319367083  0.193302843  0.717027123
> rowMin(tmp2)
  [1]  0.524009324 -0.882225554  0.715680156 -0.544043019  0.439243424
  [6]  0.328127387 -2.594599599 -1.559480263  0.178195602 -2.121714032
 [11] -0.260793016  0.819650390 -0.068638436  0.267628578 -0.217527512
 [16]  1.318137743  0.961816602  0.931544043 -0.879730474 -0.579926980
 [21]  1.139407879  0.855085667  1.275952988 -0.300860932 -1.258158294
 [26]  0.566638902  0.739126854 -0.730202022 -0.005211611  0.524076660
 [31] -0.671960529  1.134892033 -0.522201648 -0.856874394  0.276890145
 [36]  0.382801271  1.797163093 -0.945963173 -0.334950231 -0.672894601
 [41] -0.895221547  0.031820338 -1.014837956 -0.718821598  0.428146123
 [46]  0.173157791 -0.529115485  0.679782547 -0.025062964  0.686335145
 [51]  0.806544029 -0.976289168  0.589090872  2.032666343 -0.956645253
 [56]  0.659134779  0.242387088  1.070789896 -1.023490088 -1.550577452
 [61] -0.541246686  0.122996913  0.073654901 -0.488656571  0.075698076
 [66]  0.609860118 -0.703416833 -0.131279785  0.919786988  0.431128571
 [71] -0.594863318 -1.415263325 -0.166903492 -1.059470076 -0.265367349
 [76]  0.769063283  1.409637731  0.356557616  0.740967499  0.706463919
 [81]  0.635711472  1.977032678  1.387415329 -1.371813236  1.316975148
 [86]  1.579757878 -0.910255560 -1.088327841  0.176001838 -1.003037383
 [91]  0.583142459 -1.172302328 -1.283829438  1.072991270  1.214854884
 [96] -0.645852662 -0.437576439 -1.319367083  0.193302843  0.717027123
> 
> colMeans(tmp2)
[1] 0.01349105
> colSums(tmp2)
[1] 1.349105
> colVars(tmp2)
[1] 0.8683963
> colSd(tmp2)
[1] 0.9318778
> colMax(tmp2)
[1] 2.032666
> colMin(tmp2)
[1] -2.5946
> colMedians(tmp2)
[1] 0.09934749
> colRanges(tmp2)
          [,1]
[1,] -2.594600
[2,]  2.032666
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.3912245 -1.8223120 -2.2526267 -1.5628330  0.8399344  3.1955398
 [7]  0.3109258 -0.3750230  0.5526690  2.6741336
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -0.92503193
[2,] -0.52938228
[3,]  0.07293556
[4,]  0.37152549
[5,]  1.60026189
> 
> rowApply(tmp,sum)
 [1]  0.1606094 -1.6205003 -5.5336330 -3.5198376 -0.7811230  3.7598972
 [7]  1.8020966 -1.4092328  0.8003632  9.2929927
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    2   10    6    8    2   10    4    4    6     3
 [2,]    6    3    3    4    3    4    8    9    1     8
 [3,]    5    2   10    3    6    2    1    5    3     7
 [4,]    1    1    8    9    1    3    5   10    4     5
 [5,]    7    9    4    1    5    1    6    3   10    10
 [6,]    8    4    5    7    9    7    9    8    7     1
 [7,]   10    8    1   10    4    8    2    6    2     6
 [8,]    3    5    7    2    8    5    7    1    9     4
 [9,]    9    6    9    5    7    6    3    7    8     2
[10,]    4    7    2    6   10    9   10    2    5     9
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -2.26119714  0.24632072  2.66933101 -0.19871919 -6.69351119  0.23638537
 [7] -0.58790848 -1.76786634 -1.43867005 -0.96119389 -0.08385346 -0.20745911
[13] -0.36534167 -0.01715472  2.96819396  1.75351452 -1.81509255 -1.63886134
[19] -0.61005293  2.59090901
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.2951346
[2,] -0.5721565
[3,] -0.5272995
[4,] -0.4793036
[5,]  0.6126971
> 
> rowApply(tmp,sum)
[1]  8.494573 -5.249989 -5.487942  0.581615 -6.520484
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    4    8   18    6    4
[2,]    8    5    4    9   20
[3,]   18   17   11   19    8
[4,]   14   18    7    1   15
[5,]    3    2    1    5    1
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]       [,4]       [,5]        [,6]
[1,] -0.5721565  0.3272948  1.4825286  0.7593466 -0.6495294  0.63302982
[2,] -0.5272995 -1.0869844  0.7189795  1.1967491 -2.1769151 -0.66012615
[3,]  0.6126971 -0.9384468 -0.3633913 -0.6811602 -1.4366348 -0.41660451
[4,] -0.4793036 -0.1494492  1.3344622 -1.6068497 -0.7197859  0.78005393
[5,] -1.2951346  2.0939063 -0.5032480  0.1331951 -1.7106459 -0.09996773
            [,7]       [,8]        [,9]      [,10]      [,11]      [,12]
[1,] -0.02617214 -1.6985610  0.65421284  0.5771528 -0.6631781  1.5695047
[2,] -0.82898318  1.7857177 -1.87476583 -0.1448854 -0.2630440 -1.7654625
[3,]  0.28711799 -0.8522916 -0.86261842 -1.1202999  1.0550168  0.2579223
[4,]  0.75027251  0.6198347  0.56171983 -0.1346566  1.0560044  0.2117056
[5,] -0.77014365 -1.6225662  0.08278153 -0.1385048 -1.2686525 -0.4811292
          [,13]      [,14]      [,15]      [,16]      [,17]       [,18]
[1,]  0.6090282 -0.3386517  1.6026498  1.1036042  1.1348159  1.10048286
[2,]  0.1465630  0.1378805 -0.2307301  0.4216695 -2.4650013 -0.09503909
[3,] -1.2082451  0.1482784  0.4161493  0.3835467 -0.6235914 -0.22532820
[4,] -0.4301792  0.4679732  1.3916404 -0.2947243 -0.8290628 -0.81596381
[5,]  0.5174914 -0.4326350 -0.2115155  0.1394184  0.9677471 -1.60301311
          [,19]      [,20]
[1,]  0.1333709  0.7557996
[2,]  0.4866745  1.9750138
[3,] -0.5355795  0.6155212
[4,] -1.3380059  0.2059293
[5,]  0.6434870 -0.9613549
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  649  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  563  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1     col2       col3      col4       col5      col6       col7
row1 0.7814404 0.557604 0.08861747 -1.777922 -0.4901677 -1.461916 0.05707014
          col8      col9    col10     col11       col12       col13     col14
row1 -2.043147 0.1945797 2.900164 0.1907162 -0.01515858 -0.06381361 -0.255765
        col15      col16     col17    col18    col19     col20
row1 0.845752 0.08761992 0.8773366 2.158506 1.641634 -1.933481
> tmp[,"col10"]
          col10
row1  2.9001639
row2 -1.0973607
row3 -0.8947030
row4  1.2102943
row5  0.5839849
> tmp[c("row1","row5"),]
          col1      col2        col3      col4       col5      col6        col7
row1 0.7814404 0.5576040  0.08861747 -1.777922 -0.4901677 -1.461916  0.05707014
row5 0.8786294 0.5291965 -0.86273277  0.158909 -0.9430046 -1.637398 -0.57776774
           col8       col9     col10      col11       col12       col13
row1 -2.0431473  0.1945797 2.9001639  0.1907162 -0.01515858 -0.06381361
row5 -0.3562748 -0.3630461 0.5839849 -1.4365737  0.93465017  0.03863376
          col14     col15       col16     col17      col18     col19      col20
row1 -0.2557650 0.8457520  0.08761992 0.8773366  2.1585058  1.641634 -1.9334813
row5 -0.7143576 0.7008092 -0.49703605 1.0370698 -0.6232634 -1.235175 -0.2198371
> tmp[,c("col6","col20")]
           col6       col20
row1 -1.4619157 -1.93348134
row2  1.2151075  0.78305155
row3 -0.8213539  0.20147473
row4  0.4800717 -0.01521751
row5 -1.6373983 -0.21983709
> tmp[c("row1","row5"),c("col6","col20")]
          col6      col20
row1 -1.461916 -1.9334813
row5 -1.637398 -0.2198371
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3    col4     col5     col6     col7     col8
row1 48.86103 50.08171 50.62512 51.3275 51.95554 105.6004 50.18707 49.37163
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.20837 50.08737 48.33165 49.68275 50.48453 50.25171 47.97666 49.25975
        col17    col18    col19    col20
row1 50.37485 50.86512 48.92063 104.0587
> tmp[,"col10"]
        col10
row1 50.08737
row2 29.16599
row3 30.08134
row4 29.22426
row5 49.75763
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 48.86103 50.08171 50.62512 51.32750 51.95554 105.6004 50.18707 49.37163
row5 49.52762 48.89169 49.79202 48.27057 50.15708 105.3912 49.79704 49.10217
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.20837 50.08737 48.33165 49.68275 50.48453 50.25171 47.97666 49.25975
row5 50.74776 49.75763 49.07512 49.66391 50.51055 50.50271 49.82564 50.91992
        col17    col18    col19    col20
row1 50.37485 50.86512 48.92063 104.0587
row5 50.67949 50.83387 51.00241 107.1186
> tmp[,c("col6","col20")]
          col6     col20
row1 105.60043 104.05870
row2  75.34097  75.37439
row3  76.12676  74.04272
row4  74.23082  75.01593
row5 105.39120 107.11863
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 105.6004 104.0587
row5 105.3912 107.1186
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 105.6004 104.0587
row5 105.3912 107.1186
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -1.9167311
[2,]  2.3209237
[3,] -0.4348749
[4,]  0.5224662
[5,] -1.9148879
> tmp[,c("col17","col7")]
         col17       col7
[1,] 0.6405327 -1.3099217
[2,] 0.7644748 -1.3645175
[3,] 1.3428044  0.2341751
[4,] 0.7558188 -0.2908664
[5,] 1.5479293 -1.7219917
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,]  0.5930890 -0.3872571
[2,]  0.1234679  1.0749498
[3,]  1.1760050  0.5504341
[4,] -0.1038488  0.3961386
[5,] -1.0726489 -1.2735580
> subBufferedMatrix(tmp,1,c("col6"))[,1]
         col1
[1,] 0.593089
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,] 0.5930890
[2,] 0.1234679
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
          [,1]      [,2]      [,3]       [,4]       [,5]       [,6]       [,7]
row3  1.076181 -2.167381 -1.697504 -0.7627789 -0.9939019 -0.3366311  1.4423887
row1 -1.155695  1.394427 -1.520229 -1.5003583  0.3853871 -0.9151355 -0.8138939
           [,8]       [,9]      [,10]      [,11]     [,12]     [,13]      [,14]
row3 -2.5493889 0.04217878  0.4597074  0.2954137 0.1841748 0.1117288  0.3587934
row1 -0.7302151 1.60783046 -1.2198235 -1.0258590 0.3202416 0.6855628 -0.8682313
          [,15]     [,16]      [,17]     [,18]     [,19]    [,20]
row3 -0.2818734 -2.296511  1.4913206 0.5285135 0.1533542 1.846770
row1  1.0711014  1.364999 -0.7780943 1.6402675 1.1056057 1.808144
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
            [,1]      [,2]     [,3]     [,4]     [,5]        [,6]      [,7]
row2 -0.09148729 0.4933026 0.263485 0.174705 1.365263 -0.08973013 0.1209054
           [,8]       [,9]    [,10]
row2 -0.2163697 -0.5304682 1.367801
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]      [,2]      [,3]      [,4]     [,5]        [,6]       [,7]
row5 0.5216989 -1.131423 -1.628933 0.4246802 1.201868 -0.04516147 -0.2636834
          [,8]      [,9]      [,10]    [,11]    [,12]     [,13]     [,14]
row5 -1.364264 0.3533106 -0.1510532 2.132576 1.432925 0.3278718 -1.713327
         [,15]     [,16]     [,17]   [,18]      [,19]     [,20]
row5 0.5034167 0.6048014 0.9243395 1.43488 -0.3802145 0.9329274
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x600000200120>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM5cd34494053e"
 [2] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM5cd351e44c9e"
 [3] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM5cd363624312"
 [4] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM5cd3482185b7"
 [5] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM5cd310d1d660"
 [6] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM5cd340514140"
 [7] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM5cd31692f1bd"
 [8] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM5cd393cbadf" 
 [9] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM5cd372108b35"
[10] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM5cd31c237f14"
[11] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM5cd35e6c087a"
[12] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM5cd36a0b204" 
[13] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM5cd320072802"
[14] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM5cd335d3abbb"
[15] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM5cd35baf9d98"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x60000027c1e0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x60000027c1e0>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x60000027c1e0>
> rowMedians(tmp)
  [1]  0.5361616140  1.0119123006 -0.3488913531  0.1770694733  0.1712101688
  [6] -0.2946034271 -0.0390025051 -0.1191663373 -0.3474243304 -0.2123143312
 [11] -0.2162773273 -0.3178539305 -0.5397545338 -0.0239047984 -0.4262723515
 [16]  0.0440848747 -0.3165066917  0.0961751883 -0.4629490361 -0.6936648547
 [21] -0.2824262419  0.1344381851  0.5945290523  0.2774011067 -0.0372307193
 [26] -0.1887390310  0.3013703033 -0.0786081614 -0.5393271307 -0.1187979655
 [31] -0.0325786984  0.0715198501 -0.0088086115 -0.0353300588  0.2622029326
 [36]  0.0185990033 -0.6589865169  0.2515061591 -0.3774021454 -0.0088474087
 [41]  0.0986594556 -0.3674926783  0.1499198337  0.1785801037 -0.0916479298
 [46] -0.4799295134 -0.1053805849 -0.0002561997 -0.1785900677 -0.0745449829
 [51]  0.5565856798  0.0550381674  0.1145645121 -0.0242094780  0.1612243474
 [56]  0.0959241121  0.2900988095 -0.1467776021  0.1387262322 -0.6685311609
 [61]  0.2206771003  0.2941837066  0.2902487264  0.1127930103  0.3822752417
 [66] -0.0224392614 -0.1563815954  0.4829877025  0.4832698957 -0.2759829828
 [71]  0.0692498074 -0.0568854439 -0.3850425760 -0.0791268806 -0.2561746435
 [76]  0.6504324917  0.3044654866 -0.2275762995  0.3310946594 -0.3027787173
 [81] -0.1433989320 -0.2664414701 -0.3801958288  0.5937590816 -0.0764781071
 [86]  0.1456837925 -0.1267261458  0.1604963429 -0.0937580474 -0.1188906230
 [91]  0.3306662345 -0.0708904189 -0.2644975352 -0.1258393112 -0.2467711295
 [96]  0.1026998934 -0.1253495062  0.2531034658  0.8372588341 -0.2541536693
[101] -0.5153857436  0.2690811810 -0.0454180065  0.3741146399  0.0973279275
[106]  0.3489769100 -0.1520073841 -0.0581774685  0.0732160358 -0.4313967759
[111] -0.0989984431 -0.4842041011  0.1663358376  0.5804334178 -0.1049655352
[116]  0.0673493140 -0.2843569813  0.3071377105 -0.1069476061  0.2791217201
[121] -0.2075390001 -0.4209000254  0.1923688142  0.1708279015 -0.0583673536
[126]  0.3010638653  0.1892778083  0.0775446419 -0.3840594060  0.5118461476
[131] -0.3645081916 -0.7927724020 -0.0950605664  0.2049026294  0.5354989837
[136]  0.0336302366  0.2993778471 -0.1492248459 -0.1748586702 -0.3265420789
[141]  0.1790491819 -0.0213946983 -0.3637093334  0.5235547056  0.3582060904
[146]  0.4850919783 -0.3936344983  0.1490744461 -0.4374225735 -0.4929327466
[151] -0.0841201081 -0.2426116214  0.3595068281  0.0323480598  0.3525454838
[156] -0.3383126549 -0.4578303879  0.0640846297 -0.1688923462  0.2699140707
[161]  0.1458919294  0.4527500948 -0.3039891769 -0.1082572502 -0.0024438390
[166]  0.1219328827 -0.5408900545 -0.1775709033 -0.5982474515 -0.0118874285
[171] -0.1675164683 -0.4327659004  0.1523143738  0.1377994221  0.4032796118
[176]  0.5606569413  0.3334176446  0.1716649625 -0.1373692070 -0.4710208555
[181] -0.3445702118 -0.0845513797  0.1441756107  0.7398766113  0.1138640038
[186]  0.3679739799 -0.0721605667 -0.0846909152 -0.0143295723  0.8924007036
[191] -0.1633706511  0.2067291750  0.0957416499  0.3638060679  0.4047600274
[196]  0.1844626551  0.0366766251 -0.2692155284 -0.2444967091 -0.5650142740
[201] -0.5449042057 -0.1688527500  0.6060369380 -0.0426532335  0.0250253769
[206]  0.3273625205 -0.2828774012  0.0534909469  0.1001611340  0.0738008999
[211]  0.4260181639 -0.0563365510 -0.1261221813  0.1836752671  0.0519679782
[216]  0.0518978977  0.3812532259  0.1952869343 -0.0685878656  0.2153448988
[221] -0.1690546642 -0.5334955906 -0.2260723480  0.6235364421 -0.0889227075
[226]  0.0919085549 -0.3265317257 -0.2057064842 -0.0114939446 -0.0266382319
> 
> proc.time()
   user  system elapsed 
  0.710   3.515   4.828 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000036b0420>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000036b0420>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000036b0420>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x6000036b0420>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x6000036ac300>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000036ac300>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x6000036ac300>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000036ac300>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000036ac300>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000036ac480>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000036ac480>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000036ac480>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6000036ac480>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000036ac480>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x6000036ac480>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000036ac480>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x6000036ac480>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000036ac480>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000036ac660>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x6000036ac660>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000036ac660>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000036ac660>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile608c1af5ed3e" "BufferedMatrixFile608c576e8d2a"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile608c1af5ed3e" "BufferedMatrixFile608c576e8d2a"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000368c060>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000368c060>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x60000368c060>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x60000368c060>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x60000368c060>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x60000368c060>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003684000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003684000>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600003684000>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x600003684000>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003698000>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003698000>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.147   0.069   0.208 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.154   0.041   0.190 

Example timings