Back to Multiple platform build/check report for BioC 3.22:   simplified   long
AB[C]DEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-08-12 12:11 -0400 (Tue, 12 Aug 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.2 LTS)x86_644.5.1 (2025-06-13) -- "Great Square Root" 4818
palomino8Windows Server 2022 Datacenterx644.5.1 (2025-06-13 ucrt) -- "Great Square Root" 4553
lconwaymacOS 12.7.1 Montereyx86_644.5.1 (2025-06-13) -- "Great Square Root" 4595
kjohnson3macOS 13.7.1 Venturaarm644.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" 4537
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4535
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 439/2317HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
Coralysis 0.99.10  (landing page)
António Sousa
Snapshot Date: 2025-08-11 13:45 -0400 (Mon, 11 Aug 2025)
git_url: https://git.bioconductor.org/packages/Coralysis
git_branch: devel
git_last_commit: 1d012cd
git_last_commit_date: 2025-07-21 03:00:23 -0400 (Mon, 21 Jul 2025)
nebbiolo2Linux (Ubuntu 24.04.2 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  NO, package depends on 'scran' which is only available as a source package that needs compilation
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for Coralysis on kjohnson3

To the developers/maintainers of the Coralysis package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/Coralysis.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: Coralysis
Version: 0.99.10
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:Coralysis.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings Coralysis_0.99.10.tar.gz
StartedAt: 2025-08-11 18:46:19 -0400 (Mon, 11 Aug 2025)
EndedAt: 2025-08-11 18:48:45 -0400 (Mon, 11 Aug 2025)
EllapsedTime: 146.7 seconds
RetCode: 0
Status:   OK  
CheckDir: Coralysis.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:Coralysis.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings Coralysis_0.99.10.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/Coralysis.Rcheck’
* using R version 4.5.1 Patched (2025-06-14 r88325)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 16.0.0 (clang-1600.0.26.6)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.1
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘Coralysis/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘Coralysis’ version ‘0.99.10’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 30 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘Coralysis’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... NOTE
Namespace in Imports field not imported from: ‘utils’
  All declared Imports should be used.
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... NOTE
PlotDimRed: no visible global function definition for ‘tail’
PlotExpression: no visible global function definition for ‘tail’
PlotDimRed,SingleCellExperiment: no visible global function definition
  for ‘tail’
PlotExpression,SingleCellExperiment: no visible global function
  definition for ‘tail’
Undefined global functions or variables:
  tail
Consider adding
  importFrom("utils", "tail")
to your NAMESPACE file.
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                       user system elapsed
AggregateDataByBatch 10.131  1.541  17.898
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.22-bioc/meat/Coralysis.Rcheck/00check.log’
for details.


Installation output

Coralysis.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL Coralysis
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’
* installing *source* package ‘Coralysis’ ...
** this is package ‘Coralysis’ version ‘0.99.10’
** using staged installation
** R
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
*** copying figures
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (Coralysis)

Tests output

Coralysis.Rcheck/tests/testthat.Rout


R version 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview
> # * https://testthat.r-lib.org/articles/special-files.html
> 
> library(testthat)
> library(Coralysis)
> 
> test_check("Coralysis")
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

WARNING: Setting 'divisive.method' to 'cluster' as 'batch.label=NULL'. 
If 'batch.label=NULL', 'divisive.method' can be one of: 'cluster', 'random'. 

Initializing divisive ICP clustering...


  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===                                                                   |   4%
  |                                                                            
  |======                                                                |   8%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |===========                                                           |  16%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |=================                                                     |  24%
  |                                                                            
  |====================                                                  |  28%
  |                                                                            
  |======================                                                |  32%
  |                                                                            
  |=========================                                             |  36%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |==================================                                    |  48%
  |                                                                            
  |====================================                                  |  52%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |=============================================                         |  64%
  |                                                                            
  |================================================                      |  68%
  |                                                                            
  |==================================================                    |  72%
  |                                                                            
  |=====================================================                 |  76%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |===========================================================           |  84%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  92%
  |                                                                            
  |===================================================================   |  96%
  |                                                                            
  |======================================================================| 100%


Divisive ICP clustering completed successfully.

Predicting cell cluster probabilities using ICP models...
Prediction of cell cluster probabilities completed successfully.

Multi-level integration completed successfully.
Divisive ICP: selecting ICP tables multiple of 1
WARNING: Setting 'divisive.method' to 'cluster' as 'batch.label=NULL'. 
If 'batch.label=NULL', 'divisive.method' can be one of: 'cluster', 'random'. 

Initializing divisive ICP clustering...


  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===                                                                   |   4%
  |                                                                            
  |======                                                                |   8%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |===========                                                           |  16%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |=================                                                     |  24%
  |                                                                            
  |====================                                                  |  28%
  |                                                                            
  |======================                                                |  32%
  |                                                                            
  |=========================                                             |  36%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |==================================                                    |  48%
  |                                                                            
  |====================================                                  |  52%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |=============================================                         |  64%
  |                                                                            
  |================================================                      |  68%
  |                                                                            
  |==================================================                    |  72%
  |                                                                            
  |=====================================================                 |  76%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |===========================================================           |  84%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  92%
  |                                                                            
  |===================================================================   |  96%
  |                                                                            
  |======================================================================| 100%


Divisive ICP clustering completed successfully.

Predicting cell cluster probabilities using ICP models...
Prediction of cell cluster probabilities completed successfully.

Multi-level integration completed successfully.
Divisive ICP: selecting ICP tables multiple of 1

Initializing divisive ICP clustering...


  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===                                                                   |   4%
  |                                                                            
  |======                                                                |   8%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |===========                                                           |  16%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |=================                                                     |  24%
  |                                                                            
  |====================                                                  |  28%
  |                                                                            
  |======================                                                |  32%
  |                                                                            
  |=========================                                             |  36%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |==================================                                    |  48%
  |                                                                            
  |====================================                                  |  52%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |=============================================                         |  64%
  |                                                                            
  |================================================                      |  68%
  |                                                                            
  |==================================================                    |  72%
  |                                                                            
  |=====================================================                 |  76%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |===========================================================           |  84%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  92%
  |                                                                            
  |===================================================================   |  96%
  |                                                                            
  |======================================================================| 100%


Divisive ICP clustering completed successfully.

Predicting cell cluster probabilities using ICP models...
Prediction of cell cluster probabilities completed successfully.

Multi-level integration completed successfully.
Parallelism disabled, because threads = 1

Initializing divisive ICP clustering...

ICP run: 1
ICP run: 2
ICP run: 3
ICP run: 4
ICP run: 5
ICP run: 6
ICP run: 7
ICP run: 8
ICP run: 9
ICP run: 10
ICP run: 11
ICP run: 12
ICP run: 13
ICP run: 14
ICP run: 15
ICP run: 16
ICP run: 17
ICP run: 18
ICP run: 19
ICP run: 20
ICP run: 21
ICP run: 22
ICP run: 23
ICP run: 24
ICP run: 25

Divisive ICP clustering completed successfully.

Predicting cell cluster probabilities using ICP models...
Prediction of cell cluster probabilities completed successfully.

Multi-level integration completed successfully.

Initializing divisive ICP clustering...


  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |=====================                                                 |  30%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |=================================================                     |  70%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |===============================================================       |  90%
  |                                                                            
  |======================================================================| 100%


Divisive ICP clustering completed successfully.

Predicting cell cluster probabilities using ICP models...
Prediction of cell cluster probabilities completed successfully.

Multi-level integration completed successfully.
WARNING: Setting 'divisive.method' to 'cluster' as 'batch.label=NULL'. 
If 'batch.label=NULL', 'divisive.method' can be one of: 'cluster', 'random'. 

Initializing divisive ICP clustering...


  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===                                                                   |   4%
  |                                                                            
  |======                                                                |   8%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |===========                                                           |  16%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |=================                                                     |  24%
  |                                                                            
  |====================                                                  |  28%
  |                                                                            
  |======================                                                |  32%
  |                                                                            
  |=========================                                             |  36%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |==================================                                    |  48%
  |                                                                            
  |====================================                                  |  52%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |=============================================                         |  64%
  |                                                                            
  |================================================                      |  68%
  |                                                                            
  |==================================================                    |  72%
  |                                                                            
  |=====================================================                 |  76%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |===========================================================           |  84%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  92%
  |                                                                            
  |===================================================================   |  96%
  |                                                                            
  |======================================================================| 100%


Divisive ICP clustering completed successfully.

Predicting cell cluster probabilities using ICP models...
Prediction of cell cluster probabilities completed successfully.

Multi-level integration completed successfully.
[ FAIL 0 | WARN 0 | SKIP 0 | PASS 11 ]
> 
> proc.time()
   user  system elapsed 
 15.220   5.102  14.580 

Example timings

Coralysis.Rcheck/Coralysis-Ex.timings

nameusersystemelapsed
AggregateDataByBatch10.131 1.54117.898
BinCellClusterProbability000
CellBinsFeatureCorrelation000
CellClusterProbabilityDistribution2.6291.6562.566
FindAllClusterMarkers0.0810.0140.095
FindClusterMarkers0.0860.0090.095
GetCellClusterProbability1.7311.2851.871
GetFeatureCoefficients2.6001.6822.477
HeatmapFeatures0.1340.0430.185
MajorityVotingFeatures000
PCAElbowPlot1.971.462.41
PlotClusterTree2.7871.7402.785
PlotDimRed0.6360.0330.672
PlotExpression0.4730.0140.494
PrepareData0.0970.0060.103
ReferenceMapping1.9341.0632.221
RunPCA1.9241.4892.219
RunParallelDivisiveICP2.0541.6102.432
RunTSNE0.6100.0890.726
RunUMAP2.6481.5552.996
SummariseCellClusterProbability2.0291.5412.413
TabulateCellBinsByGroup000
VlnPlot0.4060.1120.435