Back to Multiple platform build/check report for BioC 3.22:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-10-13 12:04 -0400 (Mon, 13 Oct 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" 4864
lconwaymacOS 12.7.1 Montereyx86_644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4652
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4597
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4586
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2020/2346HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.19.2  (landing page)
Joshua David Campbell
Snapshot Date: 2025-10-12 13:45 -0400 (Sun, 12 Oct 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: devel
git_last_commit: 238aed05
git_last_commit_date: 2025-09-26 08:22:06 -0400 (Fri, 26 Sep 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    ERROR  
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  NO, package depends on 'MAST' which is not available
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    OK    OK  NO, package depends on 'MAST' which is not available
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for singleCellTK on nebbiolo2

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.19.2
Command: /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings singleCellTK_2.19.2.tar.gz
StartedAt: 2025-10-13 04:21:51 -0400 (Mon, 13 Oct 2025)
EndedAt: 2025-10-13 04:40:12 -0400 (Mon, 13 Oct 2025)
EllapsedTime: 1101.0 seconds
RetCode: 1
Status:   ERROR  
CheckDir: singleCellTK.Rcheck
Warnings: NA

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings singleCellTK_2.19.2.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck’
* using R version 4.5.1 Patched (2025-08-23 r88802)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.19.2’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 80 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  7.0Mb
  sub-directories of 1Mb or more:
    R         1.0Mb
    extdata   1.6Mb
    shiny     3.0Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotEnrichR.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotScDblFinderResults   66.274  0.993  32.257
runScDblFinder           56.473  0.617  21.150
importGeneSetsFromMSigDB 45.057  0.699  45.755
plotDoubletFinderResults 38.813  0.264  39.156
runDoubletFinder         35.641  0.131  35.775
runSeuratSCTransform     29.749  0.880  30.632
plotBatchCorrCompare     12.807  0.068  13.061
importExampleData        11.833  0.492  12.728
plotScdsHybridResults    11.460  0.607  10.730
plotBcdsResults          10.408  0.146   8.802
plotDecontXResults        8.970  0.063   9.035
plotUMAP                  7.750  0.443   8.274
runUMAP                   7.878  0.237   8.195
plotCxdsResults           7.568  0.069   7.712
runDecontX                7.602  0.001   7.605
plotEmptyDropsResults     6.642  0.040   6.682
detectCellOutlier         6.445  0.190   6.636
plotEmptyDropsScatter     6.575  0.021   6.597
runEmptyDrops             6.252  0.014   6.266
plotDEGViolin             5.551  0.102   5.630
plotTSCANClusterDEG       5.060  0.043   5.102
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 ERROR
Running the tests in ‘tests/testthat.R’ failed.
Last 13 lines of output:
  [ FAIL 1 | WARN 22 | SKIP 0 | PASS 223 ]
  
  ══ Failed tests ════════════════════════════════════════════════════════════════
  ── Error ('test-enrichment.R:46:5'): Testing correct function usage ────────────
  Error in `order(enriched$P.value, decreasing = FALSE)`: argument 1 is not a vector
  Backtrace:
      ▆
   1. └─singleCellTK::runEnrichR(...) at test-enrichment.R:46:5
   2.   ├─enriched[order(enriched$P.value, decreasing = FALSE), ]
   3.   ├─base::`[.data.frame`(...)
   4.   └─base::order(enriched$P.value, decreasing = FALSE)
  
  [ FAIL 1 | WARN 22 | SKIP 0 | PASS 223 ]
  Error: Test failures
  Execution halted
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 ERROR, 1 NOTE
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.22-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.19.2’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
All Done!
> 
> proc.time()
   user  system elapsed 
  0.165   0.035   0.186 

singleCellTK.Rcheck/tests/testthat.Rout.fail


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
[1]	train-logloss:0.452540 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.320237 
[3]	train-logloss:0.237326 
[4]	train-logloss:0.182355 
[5]	train-logloss:0.144099 
[6]	train-logloss:0.117553 
[7]	train-logloss:0.098814 
[8]	train-logloss:0.084978 
[9]	train-logloss:0.075063 
[10]	train-logloss:0.067483 
[11]	train-logloss:0.061861 
[12]	train-logloss:0.057362 
[13]	train-logloss:0.053725 
[14]	train-logloss:0.050620 
[15]	train-logloss:0.047937 
[16]	train-logloss:0.045355 
[17]	train-logloss:0.043608 
[18]	train-logloss:0.042678 
[1]	train-logloss:0.452932 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.320861 
[3]	train-logloss:0.238138 
[4]	train-logloss:0.183327 
[5]	train-logloss:0.145234 
[6]	train-logloss:0.118471 
[7]	train-logloss:0.099668 
[8]	train-logloss:0.085972 
[9]	train-logloss:0.076338 
[10]	train-logloss:0.068629 
[11]	train-logloss:0.062967 
[12]	train-logloss:0.057971 
[13]	train-logloss:0.053386 
[14]	train-logloss:0.050623 
[1]	train-logloss:0.453030 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.321019 
[3]	train-logloss:0.238344 
[4]	train-logloss:0.183572 
[5]	train-logloss:0.145515 
[6]	train-logloss:0.118784 
[7]	train-logloss:0.100283 
[8]	train-logloss:0.086178 
[9]	train-logloss:0.076766 
[10]	train-logloss:0.069198 
[11]	train-logloss:0.063614 
[12]	train-logloss:0.059085 
[13]	train-logloss:0.055346 
[14]	train-logloss:0.052474 
[15]	train-logloss:0.049706 
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 1 | WARN 22 | SKIP 0 | PASS 223 ]

══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-enrichment.R:46:5'): Testing correct function usage ────────────
Error in `order(enriched$P.value, decreasing = FALSE)`: argument 1 is not a vector
Backtrace:
    ▆
 1. └─singleCellTK::runEnrichR(...) at test-enrichment.R:46:5
 2.   ├─enriched[order(enriched$P.value, decreasing = FALSE), ]
 3.   ├─base::`[.data.frame`(...)
 4.   └─base::order(enriched$P.value, decreasing = FALSE)

[ FAIL 1 | WARN 22 | SKIP 0 | PASS 223 ]
Error: Test failures
Execution halted

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0020.0000.003
SEG0.0020.0000.003
calcEffectSizes0.1810.0110.192
combineSCE0.8070.0050.811
computeZScore0.2320.0090.240
convertSCEToSeurat4.2290.0994.328
convertSeuratToSCE0.3420.0080.350
dedupRowNames0.0550.0020.057
detectCellOutlier6.4450.1906.636
diffAbundanceFET0.0530.0010.054
discreteColorPalette0.0060.0000.006
distinctColors0.0010.0010.002
downSampleCells0.4740.0670.541
downSampleDepth0.3980.0040.402
expData-ANY-character-method0.1210.0000.120
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.160.000.16
expData-set0.1500.0180.168
expData0.1280.0030.131
expDataNames-ANY-method0.1230.0080.130
expDataNames0.1210.0080.129
expDeleteDataTag0.0320.0030.035
expSetDataTag0.0240.0010.025
expTaggedData0.0240.0000.024
exportSCE0.0210.0010.022
exportSCEtoAnnData0.0940.0050.099
exportSCEtoFlatFile0.0890.0090.098
featureIndex0.0330.0040.037
generateSimulatedData0.0480.0060.054
getBiomarker0.0520.0080.060
getDEGTopTable0.6660.0500.717
getDiffAbundanceResults0.0470.0000.047
getEnrichRResult0.5490.0313.034
getFindMarkerTopTable1.4070.0361.443
getMSigDBTable0.0010.0010.003
getPathwayResultNames0.0190.0030.022
getSampleSummaryStatsTable0.1770.0000.178
getSoupX0.0000.0010.000
getTSCANResults0.9690.0120.982
getTopHVG0.7620.0370.798
importAnnData0.0020.0000.002
importBUStools0.1400.0030.143
importCellRanger0.6550.0150.671
importCellRangerV2Sample0.1300.0010.132
importCellRangerV3Sample0.2540.0010.255
importDropEst0.1930.0000.193
importExampleData11.833 0.49212.728
importGeneSetsFromCollection1.7950.0921.887
importGeneSetsFromGMT0.0600.0030.063
importGeneSetsFromList0.1230.0000.123
importGeneSetsFromMSigDB45.057 0.69945.755
importMitoGeneSet0.0530.0020.055
importOptimus0.0020.0000.001
importSEQC0.1390.0120.151
importSTARsolo0.1590.0070.166
iterateSimulations0.1770.0090.186
listSampleSummaryStatsTables0.2890.0190.308
mergeSCEColData0.3140.0070.322
mouseBrainSubsetSCE0.0350.0010.037
msigdb_table0.0010.0010.001
plotBarcodeRankDropsResults0.8370.0080.845
plotBarcodeRankScatter0.8190.0000.819
plotBatchCorrCompare12.807 0.06813.061
plotBatchVariance0.4410.0020.443
plotBcdsResults10.408 0.146 8.802
plotBubble0.7890.0010.790
plotClusterAbundance1.3760.0001.376
plotCxdsResults7.5680.0697.712
plotDEGHeatmap2.0190.0522.071
plotDEGRegression4.3000.0104.287
plotDEGViolin5.5510.1025.630
plotDEGVolcano0.9660.0040.971
plotDecontXResults8.9700.0639.035
plotDimRed0.3230.0000.323
plotDoubletFinderResults38.813 0.26439.156
plotEmptyDropsResults6.6420.0406.682
plotEmptyDropsScatter6.5750.0216.597
plotFindMarkerHeatmap3.8080.0543.862
plotMASTThresholdGenes1.3170.0111.329
plotPCA0.3850.0020.386
plotPathway0.6670.0050.672
plotRunPerCellQCResults3.0870.0103.096
plotSCEBarAssayData0.3080.0010.309
plotSCEBarColData0.2240.0010.225
plotSCEBatchFeatureMean0.3910.0000.391
plotSCEDensity0.3200.0010.321
plotSCEDensityAssayData0.3170.0010.318
plotSCEDensityColData0.3040.0030.307
plotSCEDimReduceColData0.7950.0010.796
plotSCEDimReduceFeatures0.3740.0010.375
plotSCEHeatmap0.4260.0010.427
plotSCEScatter2.0590.1092.168
plotSCEViolin0.3500.0050.355
plotSCEViolinAssayData0.3640.0050.369
plotSCEViolinColData0.4190.0010.420
plotScDblFinderResults66.274 0.99332.257
plotScanpyDotPlot0.0220.0020.023
plotScanpyEmbedding0.0210.0010.022
plotScanpyHVG0.0200.0010.021
plotScanpyHeatmap0.0210.0000.021
plotScanpyMarkerGenes0.0220.0000.021
plotScanpyMarkerGenesDotPlot0.0220.0000.022
plotScanpyMarkerGenesHeatmap0.0220.0000.022
plotScanpyMarkerGenesMatrixPlot0.0200.0010.021
plotScanpyMarkerGenesViolin0.0210.0000.021
plotScanpyMatrixPlot0.0210.0000.021
plotScanpyPCA0.0220.0000.022
plotScanpyPCAGeneRanking0.0210.0010.023
plotScanpyPCAVariance0.0210.0000.021
plotScanpyViolin0.0190.0020.021
plotScdsHybridResults11.460 0.60710.730
plotScrubletResults0.0230.0000.023
plotSeuratElbow0.0210.0010.022
plotSeuratHVG0.0220.0000.022
plotSeuratJackStraw0.0210.0000.021
plotSeuratReduction0.0220.0000.022
plotSoupXResults000
plotTSCANClusterDEG5.0600.0435.102
plotTSCANClusterPseudo1.3910.0031.394
plotTSCANDimReduceFeatures1.4670.0201.487
plotTSCANPseudotimeGenes1.7050.0101.716
plotTSCANPseudotimeHeatmap1.3360.0141.350
plotTSCANResults1.3010.0421.343
plotTSNE0.4300.0080.438
plotTopHVG0.6380.0070.645
plotUMAP7.7500.4438.274
readSingleCellMatrix0.0050.0000.005
reportCellQC0.0820.0000.083
reportDropletQC0.0230.0000.023
reportQCTool0.0780.0000.078
retrieveSCEIndex0.0290.0000.028
runBBKNN000
runBarcodeRankDrops0.2280.0010.230
runBcds2.8180.0691.198
runCellQC0.0790.0020.081
runClusterSummaryMetrics0.3930.0180.411
runComBatSeq0.4280.0180.447
runCxds0.3230.0180.341
runCxdsBcdsHybrid3.0990.1091.341
runDEAnalysis0.4190.0140.433
runDecontX7.6020.0017.605
runDimReduce0.2750.0000.275
runDoubletFinder35.641 0.13135.775
runDropletQC0.0210.0010.022
runEmptyDrops6.2520.0146.266
runEnrichR0.5550.0632.769
runFastMNN1.7030.0901.793
runFeatureSelection0.2110.0010.212
runFindMarker1.3820.0241.406
runGSVA0.6830.0140.698
runHarmony0.0380.0020.040
runKMeans0.1740.0020.176
runLimmaBC0.1490.0000.150
runMNNCorrect0.3980.0010.398
runModelGeneVar0.3070.0000.307
runNormalization2.7020.1172.818
runPerCellQC0.3270.0020.328
runSCANORAMA000
runSCMerge0.0040.0000.004
runScDblFinder56.473 0.61721.150
runScanpyFindClusters0.0240.0000.024
runScanpyFindHVG0.0240.0000.024
runScanpyFindMarkers0.0210.0010.022
runScanpyNormalizeData0.0980.0010.099
runScanpyPCA0.0220.0000.022
runScanpyScaleData0.0230.0000.023
runScanpyTSNE0.0230.0000.023
runScanpyUMAP0.0210.0010.022
runScranSNN0.2840.0010.285
runScrublet0.0220.0000.022
runSeuratFindClusters0.0220.0000.021
runSeuratFindHVG0.4570.0000.457
runSeuratHeatmap0.0220.0000.022
runSeuratICA0.0200.0010.021
runSeuratJackStraw0.0220.0000.022
runSeuratNormalizeData0.0220.0000.022
runSeuratPCA0.0210.0000.021
runSeuratSCTransform29.749 0.88030.632
runSeuratScaleData0.0230.0000.024
runSeuratUMAP0.0220.0010.022
runSingleR0.0390.0000.038
runSoupX000
runTSCAN0.6910.0100.700
runTSCANClusterDEAnalysis0.7910.0060.797
runTSCANDEG0.7980.0200.818
runTSNE0.7330.0020.734
runUMAP7.8780.2378.195
runVAM0.2960.0000.296
runZINBWaVE0.0040.0010.004
sampleSummaryStats0.1660.0010.167
scaterCPM0.1400.0010.142
scaterPCA0.4480.0010.449
scaterlogNormCounts0.2340.0000.234
sce0.0220.0000.023
sctkListGeneSetCollections0.0830.0000.083
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv0.0000.0000.001
selectSCTKConda000
selectSCTKVirtualEnvironment0.0000.0000.001
setRowNames0.0870.0000.088
setSCTKDisplayRow0.4410.0020.444
singleCellTK000
subDiffEx0.3280.0020.329
subsetSCECols0.0830.0010.084
subsetSCERows0.2840.0200.304
summarizeSCE0.0660.0050.072
trimCounts0.2110.0030.214