Back to Multiple platform build/check report for BioC 3.22:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-09-04 12:05 -0400 (Thu, 04 Sep 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 (2025-06-13) -- "Great Square Root" 4822
lconwaymacOS 12.7.1 Montereyx86_644.5.1 (2025-06-13) -- "Great Square Root" 4617
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" 4564
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4541
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 252/2321HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.73.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-09-03 13:45 -0400 (Wed, 03 Sep 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: 0147962
git_last_commit_date: 2025-04-15 09:39:39 -0400 (Tue, 15 Apr 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on lconway

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.73.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz
StartedAt: 2025-09-03 19:34:12 -0400 (Wed, 03 Sep 2025)
EndedAt: 2025-09-03 19:35:01 -0400 (Wed, 03 Sep 2025)
EllapsedTime: 48.3 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.1 (2025-06-13)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.73.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
* used SDK: ‘MacOSX11.3.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.73.0’
** using staged installation
** libs
using C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
using SDK: ‘MacOSX11.3.sdk’
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch x86_64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/x86_64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R
installing to /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.1 (2025-06-13) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.323   0.142   0.478 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.1 (2025-06-13) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 480847 25.7    1056617 56.5         NA   634462 33.9
Vcells 891074  6.8    8388608 64.0      98304  2108713 16.1
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Sep  3 19:34:36 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Sep  3 19:34:36 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x600002404060>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Sep  3 19:34:40 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Sep  3 19:34:42 2025"
> 
> ColMode(tmp2)
<pointer: 0x600002404060>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]       [,2]       [,3]       [,4]
[1,] 101.9526206 -0.2721567 -0.5457187  0.7310229
[2,]  -0.7244721  0.8181250  0.5267739  0.5374444
[3,]  -0.1389711  1.1042449 -1.5604938 -0.8382285
[4,]   0.9971459  1.0595777  0.6333137  1.0676647
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]      [,2]      [,3]      [,4]
[1,] 101.9526206 0.2721567 0.5457187 0.7310229
[2,]   0.7244721 0.8181250 0.5267739 0.5374444
[3,]   0.1389711 1.1042449 1.5604938 0.8382285
[4,]   0.9971459 1.0595777 0.6333137 1.0676647
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0971590 0.5216864 0.7387278 0.8549988
[2,]  0.8511593 0.9045026 0.7257919 0.7331060
[3,]  0.3727883 1.0508306 1.2491972 0.9155482
[4,]  0.9985720 1.0293579 0.7958101 1.0332786
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 227.92421 30.48902 32.93300 34.28101
[2,]  34.23606 34.86315 32.78469 32.86850
[3,]  28.86685 36.61255 39.05247 34.99371
[4,]  35.98287 36.35316 33.59141 36.40045
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x600002460060>
> exp(tmp5)
<pointer: 0x600002460060>
> log(tmp5,2)
<pointer: 0x600002460060>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 474.3944
> Min(tmp5)
[1] 53.05789
> mean(tmp5)
[1] 72.6975
> Sum(tmp5)
[1] 14539.5
> Var(tmp5)
[1] 874.3923
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 92.66411 68.81324 71.09683 73.40600 71.53669 73.25510 70.05642 68.57714
 [9] 69.05074 68.51876
> rowSums(tmp5)
 [1] 1853.282 1376.265 1421.937 1468.120 1430.734 1465.102 1401.128 1371.543
 [9] 1381.015 1370.375
> rowVars(tmp5)
 [1] 8119.29921   31.84066   91.78199   66.05345   69.43910   55.35638
 [7]   59.00268   61.41812   59.71384   46.10951
> rowSd(tmp5)
 [1] 90.107154  5.642753  9.580292  8.127328  8.333013  7.440187  7.681320
 [8]  7.836972  7.727473  6.790399
> rowMax(tmp5)
 [1] 474.39438  77.04442  90.94590  87.34064  89.97230  85.78532  84.52878
 [8]  91.08992  87.88715  84.42775
> rowMin(tmp5)
 [1] 63.45890 56.90022 54.57581 57.05013 62.52709 58.77448 56.89882 53.05789
 [9] 54.71078 57.16290
> 
> colMeans(tmp5)
 [1] 109.80583  69.04462  71.00937  70.68061  71.68452  71.28098  71.64409
 [8]  68.95641  67.58147  73.02318  73.58449  69.34757  73.00785  69.32133
[15]  72.30287  72.64308  67.96401  75.62863  66.74195  68.69722
> colSums(tmp5)
 [1] 1098.0583  690.4462  710.0937  706.8061  716.8452  712.8098  716.4409
 [8]  689.5641  675.8147  730.2318  735.8449  693.4757  730.0785  693.2133
[15]  723.0287  726.4308  679.6401  756.2863  667.4195  686.9722
> colVars(tmp5)
 [1] 16432.08790    61.23745    31.23759    57.35465    28.57574    95.38283
 [7]    38.54113    83.91198    74.33189   109.33443    55.65291    22.95746
[13]    68.22921    56.81846    61.52518    48.72497    67.26971    72.93698
[19]    27.35620   120.49822
> colSd(tmp5)
 [1] 128.187706   7.825436   5.589060   7.573285   5.345628   9.766413
 [7]   6.208150   9.160348   8.621594  10.456310   7.460088   4.791395
[13]   8.260098   7.537802   7.843799   6.980328   8.201811   8.540315
[19]   5.230315  10.977168
> colMax(tmp5)
 [1] 474.39438  84.42775  81.28259  84.52878  82.31986  85.78532  83.29545
 [8]  84.52362  79.60731  89.97230  88.45567  77.63346  82.58328  81.70814
[15]  80.68292  82.28633  86.11047  91.08992  75.66933  90.94590
> colMin(tmp5)
 [1] 60.08257 59.33948 63.73910 61.51724 65.22317 60.10129 64.25832 54.71078
 [9] 54.57581 59.51368 64.65763 62.64697 57.05013 57.57490 56.90022 60.65295
[17] 60.75965 67.88358 57.16290 53.05789
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 92.66411 68.81324 71.09683       NA 71.53669 73.25510 70.05642 68.57714
 [9] 69.05074 68.51876
> rowSums(tmp5)
 [1] 1853.282 1376.265 1421.937       NA 1430.734 1465.102 1401.128 1371.543
 [9] 1381.015 1370.375
> rowVars(tmp5)
 [1] 8119.29921   31.84066   91.78199   69.01086   69.43910   55.35638
 [7]   59.00268   61.41812   59.71384   46.10951
> rowSd(tmp5)
 [1] 90.107154  5.642753  9.580292  8.307277  8.333013  7.440187  7.681320
 [8]  7.836972  7.727473  6.790399
> rowMax(tmp5)
 [1] 474.39438  77.04442  90.94590        NA  89.97230  85.78532  84.52878
 [8]  91.08992  87.88715  84.42775
> rowMin(tmp5)
 [1] 63.45890 56.90022 54.57581       NA 62.52709 58.77448 56.89882 53.05789
 [9] 54.71078 57.16290
> 
> colMeans(tmp5)
 [1] 109.80583  69.04462        NA  70.68061  71.68452  71.28098  71.64409
 [8]  68.95641  67.58147  73.02318  73.58449  69.34757  73.00785  69.32133
[15]  72.30287  72.64308  67.96401  75.62863  66.74195  68.69722
> colSums(tmp5)
 [1] 1098.0583  690.4462        NA  706.8061  716.8452  712.8098  716.4409
 [8]  689.5641  675.8147  730.2318  735.8449  693.4757  730.0785  693.2133
[15]  723.0287  726.4308  679.6401  756.2863  667.4195  686.9722
> colVars(tmp5)
 [1] 16432.08790    61.23745          NA    57.35465    28.57574    95.38283
 [7]    38.54113    83.91198    74.33189   109.33443    55.65291    22.95746
[13]    68.22921    56.81846    61.52518    48.72497    67.26971    72.93698
[19]    27.35620   120.49822
> colSd(tmp5)
 [1] 128.187706   7.825436         NA   7.573285   5.345628   9.766413
 [7]   6.208150   9.160348   8.621594  10.456310   7.460088   4.791395
[13]   8.260098   7.537802   7.843799   6.980328   8.201811   8.540315
[19]   5.230315  10.977168
> colMax(tmp5)
 [1] 474.39438  84.42775        NA  84.52878  82.31986  85.78532  83.29545
 [8]  84.52362  79.60731  89.97230  88.45567  77.63346  82.58328  81.70814
[15]  80.68292  82.28633  86.11047  91.08992  75.66933  90.94590
> colMin(tmp5)
 [1] 60.08257 59.33948       NA 61.51724 65.22317 60.10129 64.25832 54.71078
 [9] 54.57581 59.51368 64.65763 62.64697 57.05013 57.57490 56.90022 60.65295
[17] 60.75965 67.88358 57.16290 53.05789
> 
> Max(tmp5,na.rm=TRUE)
[1] 474.3944
> Min(tmp5,na.rm=TRUE)
[1] 53.05789
> mean(tmp5,na.rm=TRUE)
[1] 72.71148
> Sum(tmp5,na.rm=TRUE)
[1] 14469.58
> Var(tmp5,na.rm=TRUE)
[1] 878.7691
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.66411 68.81324 71.09683 73.58968 71.53669 73.25510 70.05642 68.57714
 [9] 69.05074 68.51876
> rowSums(tmp5,na.rm=TRUE)
 [1] 1853.282 1376.265 1421.937 1398.204 1430.734 1465.102 1401.128 1371.543
 [9] 1381.015 1370.375
> rowVars(tmp5,na.rm=TRUE)
 [1] 8119.29921   31.84066   91.78199   69.01086   69.43910   55.35638
 [7]   59.00268   61.41812   59.71384   46.10951
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.107154  5.642753  9.580292  8.307277  8.333013  7.440187  7.681320
 [8]  7.836972  7.727473  6.790399
> rowMax(tmp5,na.rm=TRUE)
 [1] 474.39438  77.04442  90.94590  87.34064  89.97230  85.78532  84.52878
 [8]  91.08992  87.88715  84.42775
> rowMin(tmp5,na.rm=TRUE)
 [1] 63.45890 56.90022 54.57581 57.05013 62.52709 58.77448 56.89882 53.05789
 [9] 54.71078 57.16290
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 109.80583  69.04462  71.13084  70.68061  71.68452  71.28098  71.64409
 [8]  68.95641  67.58147  73.02318  73.58449  69.34757  73.00785  69.32133
[15]  72.30287  72.64308  67.96401  75.62863  66.74195  68.69722
> colSums(tmp5,na.rm=TRUE)
 [1] 1098.0583  690.4462  640.1776  706.8061  716.8452  712.8098  716.4409
 [8]  689.5641  675.8147  730.2318  735.8449  693.4757  730.0785  693.2133
[15]  723.0287  726.4308  679.6401  756.2863  667.4195  686.9722
> colVars(tmp5,na.rm=TRUE)
 [1] 16432.08790    61.23745    34.97629    57.35465    28.57574    95.38283
 [7]    38.54113    83.91198    74.33189   109.33443    55.65291    22.95746
[13]    68.22921    56.81846    61.52518    48.72497    67.26971    72.93698
[19]    27.35620   120.49822
> colSd(tmp5,na.rm=TRUE)
 [1] 128.187706   7.825436   5.914076   7.573285   5.345628   9.766413
 [7]   6.208150   9.160348   8.621594  10.456310   7.460088   4.791395
[13]   8.260098   7.537802   7.843799   6.980328   8.201811   8.540315
[19]   5.230315  10.977168
> colMax(tmp5,na.rm=TRUE)
 [1] 474.39438  84.42775  81.28259  84.52878  82.31986  85.78532  83.29545
 [8]  84.52362  79.60731  89.97230  88.45567  77.63346  82.58328  81.70814
[15]  80.68292  82.28633  86.11047  91.08992  75.66933  90.94590
> colMin(tmp5,na.rm=TRUE)
 [1] 60.08257 59.33948 63.73910 61.51724 65.22317 60.10129 64.25832 54.71078
 [9] 54.57581 59.51368 64.65763 62.64697 57.05013 57.57490 56.90022 60.65295
[17] 60.75965 67.88358 57.16290 53.05789
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.66411 68.81324 71.09683      NaN 71.53669 73.25510 70.05642 68.57714
 [9] 69.05074 68.51876
> rowSums(tmp5,na.rm=TRUE)
 [1] 1853.282 1376.265 1421.937    0.000 1430.734 1465.102 1401.128 1371.543
 [9] 1381.015 1370.375
> rowVars(tmp5,na.rm=TRUE)
 [1] 8119.29921   31.84066   91.78199         NA   69.43910   55.35638
 [7]   59.00268   61.41812   59.71384   46.10951
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.107154  5.642753  9.580292        NA  8.333013  7.440187  7.681320
 [8]  7.836972  7.727473  6.790399
> rowMax(tmp5,na.rm=TRUE)
 [1] 474.39438  77.04442  90.94590        NA  89.97230  85.78532  84.52878
 [8]  91.08992  87.88715  84.42775
> rowMin(tmp5,na.rm=TRUE)
 [1] 63.45890 56.90022 54.57581       NA 62.52709 58.77448 56.89882 53.05789
 [9] 54.71078 57.16290
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 113.68497  68.30909       NaN  70.11593  72.39558  69.98796  72.46473
 [8]  67.22672  66.51680  73.86420  74.39906  68.42691  74.78093  68.47684
[15]  72.08269  73.02831  65.94773  74.32730  66.89087  68.31818
> colSums(tmp5,na.rm=TRUE)
 [1] 1023.1647  614.7818    0.0000  631.0433  651.5603  629.8916  652.1826
 [8]  605.0405  598.6512  664.7778  669.5915  615.8422  673.0283  616.2916
[15]  648.7442  657.2548  593.5296  668.9457  602.0179  614.8636
> colVars(tmp5,na.rm=TRUE)
 [1] 18316.81241    62.80594          NA    60.93671    26.45959    88.49680
 [7]    35.78243    60.74295    70.87127   115.04388    55.14493    16.29158
[13]    41.38998    55.89770    68.67040    53.14606    29.94310    63.00255
[19]    30.52622   133.94415
> colSd(tmp5,na.rm=TRUE)
 [1] 135.339619   7.925020         NA   7.806197   5.143889   9.407274
 [7]   5.981842   7.793776   8.418507  10.725851   7.425963   4.036283
[13]   6.433504   7.476477   8.286761   7.290134   5.472029   7.937415
[19]   5.525054  11.573424
> colMax(tmp5,na.rm=TRUE)
 [1] 474.39438  84.42775      -Inf  84.52878  82.31986  85.78532  83.29545
 [8]  76.09838  79.60731  89.97230  88.45567  74.17827  82.58328  81.70814
[15]  80.68292  82.28633  78.98416  91.08992  75.66933  90.94590
> colMin(tmp5,na.rm=TRUE)
 [1] 60.08257 59.33948      Inf 61.51724 65.22317 60.10129 64.58618 54.71078
 [9] 54.57581 59.51368 64.65763 62.64697 65.15326 57.57490 56.90022 60.65295
[17] 60.75965 67.88358 57.16290 53.05789
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 235.0863 204.6517 303.0753 103.9708 216.7571 217.7475 329.8975 204.6624
 [9] 215.1711 266.5125
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 235.0863 204.6517 303.0753 103.9708 216.7571 217.7475 329.8975 204.6624
 [9] 215.1711 266.5125
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -1.421085e-13  1.705303e-13  1.136868e-13 -1.136868e-13 -4.263256e-14
 [6]  2.842171e-14  5.684342e-14  2.842171e-14 -2.557954e-13 -1.421085e-14
[11]  2.842171e-14  9.947598e-14  0.000000e+00 -5.684342e-14  0.000000e+00
[16]  8.526513e-14 -1.705303e-13  5.684342e-14 -1.421085e-13  0.000000e+00
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
6   17 
1   9 
9   8 
1   16 
9   5 
1   20 
4   7 
5   14 
3   2 
2   9 
9   8 
10   16 
3   2 
9   6 
5   2 
6   14 
7   13 
3   11 
9   18 
10   11 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.591877
> Min(tmp)
[1] -2.385943
> mean(tmp)
[1] -0.0378411
> Sum(tmp)
[1] -3.78411
> Var(tmp)
[1] 1.065146
> 
> rowMeans(tmp)
[1] -0.0378411
> rowSums(tmp)
[1] -3.78411
> rowVars(tmp)
[1] 1.065146
> rowSd(tmp)
[1] 1.032059
> rowMax(tmp)
[1] 2.591877
> rowMin(tmp)
[1] -2.385943
> 
> colMeans(tmp)
  [1] -1.861424126 -1.348970114  0.337309230 -0.131984551  1.252937721
  [6]  2.591876708  2.044594276 -0.737330177  0.712599085 -0.385250473
 [11]  0.844008027 -1.703971101 -0.328319248 -0.439543702  0.583267761
 [16]  0.082937723 -1.573586036 -0.785955863 -0.915159394 -0.668672441
 [21]  1.278658184 -0.791644743  1.617380395  0.450761544  0.384056522
 [26] -1.726835394  1.167581375 -2.385942819  0.070435121 -0.670767448
 [31]  1.477892308 -1.299761785 -1.603969234 -1.169262535 -0.766863253
 [36] -1.189554058  0.420448842  0.003185129 -1.320837172  0.404089731
 [41]  1.164494451  0.045523681  2.258048965  0.440583980 -0.394305393
 [46]  0.353189316  0.358155653  0.475289496 -1.005173383  1.554363087
 [51] -1.394977071 -0.675567188  0.683892523  0.393702446  0.609319033
 [56] -1.018841798 -1.497016688 -0.784167735 -1.370943186 -0.806313973
 [61]  0.521070806 -1.080245234  0.107525558  0.366511575 -0.034171593
 [66] -1.100827562  1.838595578 -0.187943374 -0.206259166 -1.192067429
 [71] -0.247163194  0.703820701 -0.981635074 -0.645389850 -0.112579934
 [76] -0.112348253  1.434831801  0.316448222  0.989344724  1.273338615
 [81]  0.597673449 -0.875168770 -0.704593511  0.628815806 -1.092933725
 [86] -0.683000993 -0.019521058 -0.438456957  1.177196155 -1.273342036
 [91]  0.225528026  2.010597088  0.838380316  0.468276734  0.475653691
 [96] -0.815402507  0.853611481  0.452411273  0.180028599  1.251609468
> colSums(tmp)
  [1] -1.861424126 -1.348970114  0.337309230 -0.131984551  1.252937721
  [6]  2.591876708  2.044594276 -0.737330177  0.712599085 -0.385250473
 [11]  0.844008027 -1.703971101 -0.328319248 -0.439543702  0.583267761
 [16]  0.082937723 -1.573586036 -0.785955863 -0.915159394 -0.668672441
 [21]  1.278658184 -0.791644743  1.617380395  0.450761544  0.384056522
 [26] -1.726835394  1.167581375 -2.385942819  0.070435121 -0.670767448
 [31]  1.477892308 -1.299761785 -1.603969234 -1.169262535 -0.766863253
 [36] -1.189554058  0.420448842  0.003185129 -1.320837172  0.404089731
 [41]  1.164494451  0.045523681  2.258048965  0.440583980 -0.394305393
 [46]  0.353189316  0.358155653  0.475289496 -1.005173383  1.554363087
 [51] -1.394977071 -0.675567188  0.683892523  0.393702446  0.609319033
 [56] -1.018841798 -1.497016688 -0.784167735 -1.370943186 -0.806313973
 [61]  0.521070806 -1.080245234  0.107525558  0.366511575 -0.034171593
 [66] -1.100827562  1.838595578 -0.187943374 -0.206259166 -1.192067429
 [71] -0.247163194  0.703820701 -0.981635074 -0.645389850 -0.112579934
 [76] -0.112348253  1.434831801  0.316448222  0.989344724  1.273338615
 [81]  0.597673449 -0.875168770 -0.704593511  0.628815806 -1.092933725
 [86] -0.683000993 -0.019521058 -0.438456957  1.177196155 -1.273342036
 [91]  0.225528026  2.010597088  0.838380316  0.468276734  0.475653691
 [96] -0.815402507  0.853611481  0.452411273  0.180028599  1.251609468
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -1.861424126 -1.348970114  0.337309230 -0.131984551  1.252937721
  [6]  2.591876708  2.044594276 -0.737330177  0.712599085 -0.385250473
 [11]  0.844008027 -1.703971101 -0.328319248 -0.439543702  0.583267761
 [16]  0.082937723 -1.573586036 -0.785955863 -0.915159394 -0.668672441
 [21]  1.278658184 -0.791644743  1.617380395  0.450761544  0.384056522
 [26] -1.726835394  1.167581375 -2.385942819  0.070435121 -0.670767448
 [31]  1.477892308 -1.299761785 -1.603969234 -1.169262535 -0.766863253
 [36] -1.189554058  0.420448842  0.003185129 -1.320837172  0.404089731
 [41]  1.164494451  0.045523681  2.258048965  0.440583980 -0.394305393
 [46]  0.353189316  0.358155653  0.475289496 -1.005173383  1.554363087
 [51] -1.394977071 -0.675567188  0.683892523  0.393702446  0.609319033
 [56] -1.018841798 -1.497016688 -0.784167735 -1.370943186 -0.806313973
 [61]  0.521070806 -1.080245234  0.107525558  0.366511575 -0.034171593
 [66] -1.100827562  1.838595578 -0.187943374 -0.206259166 -1.192067429
 [71] -0.247163194  0.703820701 -0.981635074 -0.645389850 -0.112579934
 [76] -0.112348253  1.434831801  0.316448222  0.989344724  1.273338615
 [81]  0.597673449 -0.875168770 -0.704593511  0.628815806 -1.092933725
 [86] -0.683000993 -0.019521058 -0.438456957  1.177196155 -1.273342036
 [91]  0.225528026  2.010597088  0.838380316  0.468276734  0.475653691
 [96] -0.815402507  0.853611481  0.452411273  0.180028599  1.251609468
> colMin(tmp)
  [1] -1.861424126 -1.348970114  0.337309230 -0.131984551  1.252937721
  [6]  2.591876708  2.044594276 -0.737330177  0.712599085 -0.385250473
 [11]  0.844008027 -1.703971101 -0.328319248 -0.439543702  0.583267761
 [16]  0.082937723 -1.573586036 -0.785955863 -0.915159394 -0.668672441
 [21]  1.278658184 -0.791644743  1.617380395  0.450761544  0.384056522
 [26] -1.726835394  1.167581375 -2.385942819  0.070435121 -0.670767448
 [31]  1.477892308 -1.299761785 -1.603969234 -1.169262535 -0.766863253
 [36] -1.189554058  0.420448842  0.003185129 -1.320837172  0.404089731
 [41]  1.164494451  0.045523681  2.258048965  0.440583980 -0.394305393
 [46]  0.353189316  0.358155653  0.475289496 -1.005173383  1.554363087
 [51] -1.394977071 -0.675567188  0.683892523  0.393702446  0.609319033
 [56] -1.018841798 -1.497016688 -0.784167735 -1.370943186 -0.806313973
 [61]  0.521070806 -1.080245234  0.107525558  0.366511575 -0.034171593
 [66] -1.100827562  1.838595578 -0.187943374 -0.206259166 -1.192067429
 [71] -0.247163194  0.703820701 -0.981635074 -0.645389850 -0.112579934
 [76] -0.112348253  1.434831801  0.316448222  0.989344724  1.273338615
 [81]  0.597673449 -0.875168770 -0.704593511  0.628815806 -1.092933725
 [86] -0.683000993 -0.019521058 -0.438456957  1.177196155 -1.273342036
 [91]  0.225528026  2.010597088  0.838380316  0.468276734  0.475653691
 [96] -0.815402507  0.853611481  0.452411273  0.180028599  1.251609468
> colMedians(tmp)
  [1] -1.861424126 -1.348970114  0.337309230 -0.131984551  1.252937721
  [6]  2.591876708  2.044594276 -0.737330177  0.712599085 -0.385250473
 [11]  0.844008027 -1.703971101 -0.328319248 -0.439543702  0.583267761
 [16]  0.082937723 -1.573586036 -0.785955863 -0.915159394 -0.668672441
 [21]  1.278658184 -0.791644743  1.617380395  0.450761544  0.384056522
 [26] -1.726835394  1.167581375 -2.385942819  0.070435121 -0.670767448
 [31]  1.477892308 -1.299761785 -1.603969234 -1.169262535 -0.766863253
 [36] -1.189554058  0.420448842  0.003185129 -1.320837172  0.404089731
 [41]  1.164494451  0.045523681  2.258048965  0.440583980 -0.394305393
 [46]  0.353189316  0.358155653  0.475289496 -1.005173383  1.554363087
 [51] -1.394977071 -0.675567188  0.683892523  0.393702446  0.609319033
 [56] -1.018841798 -1.497016688 -0.784167735 -1.370943186 -0.806313973
 [61]  0.521070806 -1.080245234  0.107525558  0.366511575 -0.034171593
 [66] -1.100827562  1.838595578 -0.187943374 -0.206259166 -1.192067429
 [71] -0.247163194  0.703820701 -0.981635074 -0.645389850 -0.112579934
 [76] -0.112348253  1.434831801  0.316448222  0.989344724  1.273338615
 [81]  0.597673449 -0.875168770 -0.704593511  0.628815806 -1.092933725
 [86] -0.683000993 -0.019521058 -0.438456957  1.177196155 -1.273342036
 [91]  0.225528026  2.010597088  0.838380316  0.468276734  0.475653691
 [96] -0.815402507  0.853611481  0.452411273  0.180028599  1.251609468
> colRanges(tmp)
          [,1]     [,2]      [,3]       [,4]     [,5]     [,6]     [,7]
[1,] -1.861424 -1.34897 0.3373092 -0.1319846 1.252938 2.591877 2.044594
[2,] -1.861424 -1.34897 0.3373092 -0.1319846 1.252938 2.591877 2.044594
           [,8]      [,9]      [,10]    [,11]     [,12]      [,13]      [,14]
[1,] -0.7373302 0.7125991 -0.3852505 0.844008 -1.703971 -0.3283192 -0.4395437
[2,] -0.7373302 0.7125991 -0.3852505 0.844008 -1.703971 -0.3283192 -0.4395437
         [,15]      [,16]     [,17]      [,18]      [,19]      [,20]    [,21]
[1,] 0.5832678 0.08293772 -1.573586 -0.7859559 -0.9151594 -0.6686724 1.278658
[2,] 0.5832678 0.08293772 -1.573586 -0.7859559 -0.9151594 -0.6686724 1.278658
          [,22]   [,23]     [,24]     [,25]     [,26]    [,27]     [,28]
[1,] -0.7916447 1.61738 0.4507615 0.3840565 -1.726835 1.167581 -2.385943
[2,] -0.7916447 1.61738 0.4507615 0.3840565 -1.726835 1.167581 -2.385943
          [,29]      [,30]    [,31]     [,32]     [,33]     [,34]      [,35]
[1,] 0.07043512 -0.6707674 1.477892 -1.299762 -1.603969 -1.169263 -0.7668633
[2,] 0.07043512 -0.6707674 1.477892 -1.299762 -1.603969 -1.169263 -0.7668633
         [,36]     [,37]       [,38]     [,39]     [,40]    [,41]      [,42]
[1,] -1.189554 0.4204488 0.003185129 -1.320837 0.4040897 1.164494 0.04552368
[2,] -1.189554 0.4204488 0.003185129 -1.320837 0.4040897 1.164494 0.04552368
        [,43]    [,44]      [,45]     [,46]     [,47]     [,48]     [,49]
[1,] 2.258049 0.440584 -0.3943054 0.3531893 0.3581557 0.4752895 -1.005173
[2,] 2.258049 0.440584 -0.3943054 0.3531893 0.3581557 0.4752895 -1.005173
        [,50]     [,51]      [,52]     [,53]     [,54]    [,55]     [,56]
[1,] 1.554363 -1.394977 -0.6755672 0.6838925 0.3937024 0.609319 -1.018842
[2,] 1.554363 -1.394977 -0.6755672 0.6838925 0.3937024 0.609319 -1.018842
         [,57]      [,58]     [,59]     [,60]     [,61]     [,62]     [,63]
[1,] -1.497017 -0.7841677 -1.370943 -0.806314 0.5210708 -1.080245 0.1075256
[2,] -1.497017 -0.7841677 -1.370943 -0.806314 0.5210708 -1.080245 0.1075256
         [,64]       [,65]     [,66]    [,67]      [,68]      [,69]     [,70]
[1,] 0.3665116 -0.03417159 -1.100828 1.838596 -0.1879434 -0.2062592 -1.192067
[2,] 0.3665116 -0.03417159 -1.100828 1.838596 -0.1879434 -0.2062592 -1.192067
          [,71]     [,72]      [,73]      [,74]      [,75]      [,76]    [,77]
[1,] -0.2471632 0.7038207 -0.9816351 -0.6453899 -0.1125799 -0.1123483 1.434832
[2,] -0.2471632 0.7038207 -0.9816351 -0.6453899 -0.1125799 -0.1123483 1.434832
         [,78]     [,79]    [,80]     [,81]      [,82]      [,83]     [,84]
[1,] 0.3164482 0.9893447 1.273339 0.5976734 -0.8751688 -0.7045935 0.6288158
[2,] 0.3164482 0.9893447 1.273339 0.5976734 -0.8751688 -0.7045935 0.6288158
         [,85]     [,86]       [,87]     [,88]    [,89]     [,90]    [,91]
[1,] -1.092934 -0.683001 -0.01952106 -0.438457 1.177196 -1.273342 0.225528
[2,] -1.092934 -0.683001 -0.01952106 -0.438457 1.177196 -1.273342 0.225528
        [,92]     [,93]     [,94]     [,95]      [,96]     [,97]     [,98]
[1,] 2.010597 0.8383803 0.4682767 0.4756537 -0.8154025 0.8536115 0.4524113
[2,] 2.010597 0.8383803 0.4682767 0.4756537 -0.8154025 0.8536115 0.4524113
         [,99]   [,100]
[1,] 0.1800286 1.251609
[2,] 0.1800286 1.251609
> 
> 
> Max(tmp2)
[1] 2.620584
> Min(tmp2)
[1] -2.562306
> mean(tmp2)
[1] 0.06115067
> Sum(tmp2)
[1] 6.115067
> Var(tmp2)
[1] 1.342691
> 
> rowMeans(tmp2)
  [1]  1.09006772  0.40114914  1.69876687 -0.11880733 -1.32504899 -0.46636794
  [7] -1.09969647 -0.16962679 -1.54359416 -2.53055570  0.61879384  0.64067080
 [13]  0.46088118  0.09844985 -1.67941723  1.49546821  1.26933515  0.56459809
 [19] -1.46216411 -0.40706037  1.31279285 -0.92217961  0.32375358  0.49606940
 [25]  0.97196916  0.28712507  2.25698983  1.22169892 -0.31605770  0.54189787
 [31] -1.32404827 -0.82202471  2.62058400  1.85628570 -0.40613486 -0.59607232
 [37] -2.55176281  0.36234707 -0.89451465 -0.28893928 -0.59009017 -0.25080524
 [43]  0.38870848 -0.81463918 -0.04971012 -0.76176881  0.55305892  1.26627776
 [49]  0.32536111  2.35552766  0.43717630  2.60846789  0.05163514  0.50784249
 [55]  0.35781620 -0.08147415 -1.62480921  0.17509932  0.28753061 -0.41946424
 [61] -0.68387960  0.32910929 -0.14086839 -1.32547556 -0.55393722 -1.38021728
 [67] -0.29400118  0.93971768 -1.38999892  1.46193166 -1.61613856  0.39585974
 [73] -2.19920300 -0.02693907  0.20287910 -0.29170037  0.08533538  1.79887622
 [79] -0.15044301  0.67071208  1.73265863  0.09304140 -0.64037627  1.58308758
 [85]  2.45271254 -1.40745287  1.46028923 -0.47417565  0.02041531  2.33970626
 [91]  1.23356729  0.68160044  0.35081075 -0.33971754 -1.86749822 -0.25864157
 [97] -0.22076735 -2.56230579  0.07756030 -0.35842809
> rowSums(tmp2)
  [1]  1.09006772  0.40114914  1.69876687 -0.11880733 -1.32504899 -0.46636794
  [7] -1.09969647 -0.16962679 -1.54359416 -2.53055570  0.61879384  0.64067080
 [13]  0.46088118  0.09844985 -1.67941723  1.49546821  1.26933515  0.56459809
 [19] -1.46216411 -0.40706037  1.31279285 -0.92217961  0.32375358  0.49606940
 [25]  0.97196916  0.28712507  2.25698983  1.22169892 -0.31605770  0.54189787
 [31] -1.32404827 -0.82202471  2.62058400  1.85628570 -0.40613486 -0.59607232
 [37] -2.55176281  0.36234707 -0.89451465 -0.28893928 -0.59009017 -0.25080524
 [43]  0.38870848 -0.81463918 -0.04971012 -0.76176881  0.55305892  1.26627776
 [49]  0.32536111  2.35552766  0.43717630  2.60846789  0.05163514  0.50784249
 [55]  0.35781620 -0.08147415 -1.62480921  0.17509932  0.28753061 -0.41946424
 [61] -0.68387960  0.32910929 -0.14086839 -1.32547556 -0.55393722 -1.38021728
 [67] -0.29400118  0.93971768 -1.38999892  1.46193166 -1.61613856  0.39585974
 [73] -2.19920300 -0.02693907  0.20287910 -0.29170037  0.08533538  1.79887622
 [79] -0.15044301  0.67071208  1.73265863  0.09304140 -0.64037627  1.58308758
 [85]  2.45271254 -1.40745287  1.46028923 -0.47417565  0.02041531  2.33970626
 [91]  1.23356729  0.68160044  0.35081075 -0.33971754 -1.86749822 -0.25864157
 [97] -0.22076735 -2.56230579  0.07756030 -0.35842809
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  1.09006772  0.40114914  1.69876687 -0.11880733 -1.32504899 -0.46636794
  [7] -1.09969647 -0.16962679 -1.54359416 -2.53055570  0.61879384  0.64067080
 [13]  0.46088118  0.09844985 -1.67941723  1.49546821  1.26933515  0.56459809
 [19] -1.46216411 -0.40706037  1.31279285 -0.92217961  0.32375358  0.49606940
 [25]  0.97196916  0.28712507  2.25698983  1.22169892 -0.31605770  0.54189787
 [31] -1.32404827 -0.82202471  2.62058400  1.85628570 -0.40613486 -0.59607232
 [37] -2.55176281  0.36234707 -0.89451465 -0.28893928 -0.59009017 -0.25080524
 [43]  0.38870848 -0.81463918 -0.04971012 -0.76176881  0.55305892  1.26627776
 [49]  0.32536111  2.35552766  0.43717630  2.60846789  0.05163514  0.50784249
 [55]  0.35781620 -0.08147415 -1.62480921  0.17509932  0.28753061 -0.41946424
 [61] -0.68387960  0.32910929 -0.14086839 -1.32547556 -0.55393722 -1.38021728
 [67] -0.29400118  0.93971768 -1.38999892  1.46193166 -1.61613856  0.39585974
 [73] -2.19920300 -0.02693907  0.20287910 -0.29170037  0.08533538  1.79887622
 [79] -0.15044301  0.67071208  1.73265863  0.09304140 -0.64037627  1.58308758
 [85]  2.45271254 -1.40745287  1.46028923 -0.47417565  0.02041531  2.33970626
 [91]  1.23356729  0.68160044  0.35081075 -0.33971754 -1.86749822 -0.25864157
 [97] -0.22076735 -2.56230579  0.07756030 -0.35842809
> rowMin(tmp2)
  [1]  1.09006772  0.40114914  1.69876687 -0.11880733 -1.32504899 -0.46636794
  [7] -1.09969647 -0.16962679 -1.54359416 -2.53055570  0.61879384  0.64067080
 [13]  0.46088118  0.09844985 -1.67941723  1.49546821  1.26933515  0.56459809
 [19] -1.46216411 -0.40706037  1.31279285 -0.92217961  0.32375358  0.49606940
 [25]  0.97196916  0.28712507  2.25698983  1.22169892 -0.31605770  0.54189787
 [31] -1.32404827 -0.82202471  2.62058400  1.85628570 -0.40613486 -0.59607232
 [37] -2.55176281  0.36234707 -0.89451465 -0.28893928 -0.59009017 -0.25080524
 [43]  0.38870848 -0.81463918 -0.04971012 -0.76176881  0.55305892  1.26627776
 [49]  0.32536111  2.35552766  0.43717630  2.60846789  0.05163514  0.50784249
 [55]  0.35781620 -0.08147415 -1.62480921  0.17509932  0.28753061 -0.41946424
 [61] -0.68387960  0.32910929 -0.14086839 -1.32547556 -0.55393722 -1.38021728
 [67] -0.29400118  0.93971768 -1.38999892  1.46193166 -1.61613856  0.39585974
 [73] -2.19920300 -0.02693907  0.20287910 -0.29170037  0.08533538  1.79887622
 [79] -0.15044301  0.67071208  1.73265863  0.09304140 -0.64037627  1.58308758
 [85]  2.45271254 -1.40745287  1.46028923 -0.47417565  0.02041531  2.33970626
 [91]  1.23356729  0.68160044  0.35081075 -0.33971754 -1.86749822 -0.25864157
 [97] -0.22076735 -2.56230579  0.07756030 -0.35842809
> 
> colMeans(tmp2)
[1] 0.06115067
> colSums(tmp2)
[1] 6.115067
> colVars(tmp2)
[1] 1.342691
> colSd(tmp2)
[1] 1.158745
> colMax(tmp2)
[1] 2.620584
> colMin(tmp2)
[1] -2.562306
> colMedians(tmp2)
[1] 0.06459772
> colRanges(tmp2)
          [,1]
[1,] -2.562306
[2,]  2.620584
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  2.59263453  0.34229920  1.63096619 -3.74986120 -4.08844290 -4.72434074
 [7] -0.42671098  3.06476201 -3.26052148 -0.05936979
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -0.90620463
[2,] -0.08556796
[3,]  0.22881265
[4,]  0.60467378
[5,]  1.74418986
> 
> rowApply(tmp,sum)
 [1] -2.1108943 -2.6753830 -4.3136309  0.7401411  1.1913479 -0.9852490
 [7]  0.5649558  2.7261167 -1.0356340 -2.7803555
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    7    6    9    7    4   10    4    7    3     8
 [2,]    3    9    8    6    7    1    6    5    9     6
 [3,]    6    3    1   10    6    9   10    6    5     3
 [4,]    1    2    6    1    8    5    9   10    6     4
 [5,]    4    1   10    2    3    8    2    2    8     7
 [6,]    5    8    4    3    1    6    1    4    7     2
 [7,]    8   10    7    8    9    3    7    1    1     9
 [8,]   10    5    5    9   10    2    8    8   10     1
 [9,]    2    4    2    4    2    4    5    9    2    10
[10,]    9    7    3    5    5    7    3    3    4     5
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  2.2042302 -4.0529527  0.9191608 -6.1430233 -2.0250191 -2.1417951
 [7]  3.1700173  4.2976940 -1.1718811 -0.1339319 -0.7298287  2.5066066
[13] -0.1529737 -1.1780063  2.5110154  3.5405655  3.0324342 -3.9194342
[19]  1.1683542 -0.3706642
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -2.3006053
[2,] -0.4783445
[3,]  0.6871384
[4,]  1.1799676
[5,]  3.1160741
> 
> rowApply(tmp,sum)
[1]  0.07292746 -7.53799868  0.96450592  3.28592996  4.54520324
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   20    9    1   18   14
[2,]    7   12    3    1   10
[3,]   17    4   14    9   12
[4,]    2    6    2    3    6
[5,]    5   13    4    8    7
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]        [,4]        [,5]       [,6]
[1,]  3.1160741 -0.5972777  1.2987523 -1.77531967 -1.01247471 -1.8797776
[2,] -0.4783445 -0.1001392 -1.7778651 -0.77802775  0.05253883 -0.4816523
[3,] -2.3006053 -1.3851511  0.7248888 -2.23932992 -1.33270215 -0.9593792
[4,]  1.1799676 -2.2856701  0.1711396 -1.25523004  0.06379628  1.4649322
[5,]  0.6871384  0.3152854  0.5022451 -0.09511594  0.20382262 -0.2859182
           [,7]       [,8]       [,9]      [,10]       [,11]      [,12]
[1,]  2.1104504 -0.6202746  0.5654222  0.4562923 -0.49906014 -0.3533167
[2,]  1.1863105  0.4280770 -2.9678922 -0.6759477 -2.24116726  2.1576180
[3,] -0.9735237  2.1031928 -0.1974166 -0.8004098  1.77829938  2.1639271
[4,]  0.4419239  0.6886449  0.5946094 -0.4770490 -0.08264586  0.4151358
[5,]  0.4048563  1.6980540  0.8333961  1.3631822  0.31474516 -1.8767576
          [,13]      [,14]      [,15]     [,16]     [,17]      [,18]      [,19]
[1,] -1.4426445 -1.6868220 -0.4446180 0.5137224 1.3888036 -0.4327882  0.7007200
[2,] -2.6592688  1.4665983 -0.3811214 0.3869843 0.5094663 -1.1013593  0.1713599
[3,]  2.2850217 -1.2212544  0.5187550 1.0309263 0.1917104  0.2249193  0.9838266
[4,]  0.8324360  1.1779347  1.6199561 0.6259409 0.3489859 -0.3028919 -0.5209751
[5,]  0.8314819 -0.9144629  1.1980437 0.9829916 0.5934681 -2.3073141 -0.1665772
          [,20]
[1,]  0.6670639
[2,] -0.2541664
[3,]  0.3688110
[4,] -1.4150112
[5,]  0.2626385
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  654  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  566  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
        col1      col2      col3      col4     col5       col6       col7
row1 1.55734 -1.111504 0.6059647 0.2621396 1.943071 -0.0346701 -0.1585542
         col8       col9     col10     col11     col12      col13     col14
row1 1.549754 -0.4881073 0.2246907 0.8716969 0.1513464 -0.3304921 -1.121802
        col15    col16      col17      col18      col19     col20
row1 1.920551 -1.77462 -0.5622811 -0.7636673 -0.2316114 0.8727426
> tmp[,"col10"]
          col10
row1  0.2246907
row2 -0.7411924
row3  0.2393207
row4 -0.1765502
row5  1.0321468
> tmp[c("row1","row5"),]
          col1       col2      col3       col4       col5       col6       col7
row1  1.557340 -1.1115037 0.6059647  0.2621396  1.9430706 -0.0346701 -0.1585542
row5 -0.362221  0.7377479 1.7475002 -1.9423681 -0.3393374 -0.2137862 -1.0115849
          col8       col9     col10      col11     col12        col13
row1 1.5497538 -0.4881073 0.2246907 0.87169691 0.1513464 -0.330492090
row5 0.4704949  0.9975118 1.0321468 0.09243583 0.4065043  0.004819475
           col14      col15      col16      col17      col18      col19
row1 -1.12180166  1.9205514 -1.7746202 -0.5622811 -0.7636673 -0.2316114
row5  0.05753241 -0.8938128 -0.3972125 -1.7164641 -0.2130356 -1.3399360
          col20
row1  0.8727426
row5 -0.6569501
> tmp[,c("col6","col20")]
           col6      col20
row1 -0.0346701  0.8727426
row2 -0.6128825 -0.9433250
row3 -1.8832884 -1.1172145
row4 -0.3920357  1.1877419
row5 -0.2137862 -0.6569501
> tmp[c("row1","row5"),c("col6","col20")]
           col6      col20
row1 -0.0346701  0.8727426
row5 -0.2137862 -0.6569501
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.53997 50.12249 50.51548 51.10446 51.62705 103.7733 48.47494 50.45633
        col9    col10    col11    col12    col13    col14   col15    col16
row1 48.4259 49.06127 51.02144 50.29304 52.25142 50.73069 51.5359 49.89953
        col17    col18    col19    col20
row1 49.85676 49.86615 50.77637 106.1933
> tmp[,"col10"]
        col10
row1 49.06127
row2 28.60029
row3 29.30911
row4 31.00967
row5 48.42320
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.53997 50.12249 50.51548 51.10446 51.62705 103.7733 48.47494 50.45633
row5 48.96476 49.60904 50.40028 48.98935 48.59672 106.2927 50.53347 50.66645
         col9    col10    col11    col12    col13    col14    col15    col16
row1 48.42590 49.06127 51.02144 50.29304 52.25142 50.73069 51.53590 49.89953
row5 50.81048 48.42320 49.35925 49.07728 48.38150 50.67324 51.32723 50.93059
        col17    col18    col19    col20
row1 49.85676 49.86615 50.77637 106.1933
row5 49.79153 49.39334 47.49130 104.4822
> tmp[,c("col6","col20")]
          col6     col20
row1 103.77327 106.19334
row2  75.60352  75.18807
row3  74.02031  76.04511
row4  75.32933  75.54237
row5 106.29266 104.48224
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 103.7733 106.1933
row5 106.2927 104.4822
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 103.7733 106.1933
row5 106.2927 104.4822
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -0.6668812
[2,]  0.9984328
[3,]  2.5451405
[4,] -1.3839623
[5,] -0.5057663
> tmp[,c("col17","col7")]
          col17       col7
[1,]  1.9602704 -0.4104722
[2,]  1.3730643  1.0403453
[3,]  0.2442243 -0.6744491
[4,]  0.2418060 -1.1911142
[5,] -1.0392677  1.7024936
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6       col20
[1,]  0.3221968  3.00917115
[2,]  0.6130718  1.48981064
[3,]  0.3234376 -0.06945214
[4,] -0.3340214 -0.91869969
[5,]  0.1707711  1.59152293
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] 0.3221968
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,] 0.3221968
[2,] 0.6130718
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
          [,1]       [,2]      [,3]       [,4]       [,5]       [,6]
row3 1.5787850 -1.4655487 -1.027959 -0.5797713 -0.2232493 -0.5201240
row1 0.4097799 -0.7675045 -2.649473  0.4994576 -0.8751781 -0.5372192
            [,7]       [,8]        [,9]      [,10]      [,11]      [,12]
row3  0.05277048 -0.6724382 -0.07889721  2.0054726 -1.0112971 -0.9646821
row1 -0.76394190 -1.4762531  0.99833214 -0.2668216  0.0638854  0.3644815
        [,13]       [,14]      [,15]      [,16]       [,17]      [,18]
row3 1.746079 -1.05309102  0.1919961 -0.1392086 -0.40285014  0.5946917
row1 0.533959 -0.01466605 -0.1826569 -0.3096767 -0.01459247 -1.2419748
         [,19]       [,20]
row3 0.1729235  0.42574625
row1 0.2737472 -0.07524686
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
           [,1]      [,2]      [,3]     [,4]        [,5]      [,6]       [,7]
row2 -0.7223768 0.4411344 -1.449149 1.451827 -0.05939127 0.6880516 -0.9593972
          [,8]       [,9]    [,10]
row2 -1.344281 -0.1680064 1.552281
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]    [,2]      [,3]      [,4]      [,5]       [,6]       [,7]
row5 0.02785472 1.30244 -0.456301 0.3140045 -1.550745 -0.3681185 -0.8859623
         [,8]       [,9]      [,10]      [,11]      [,12]   [,13]   [,14]
row5 0.405696 -0.9662372 -0.1811705 -0.1236936 0.07338171 1.43112 1.07072
         [,15]      [,16]       [,17]     [,18]     [,19]     [,20]
row5 -1.515664 0.06218649 -0.01670851 0.7169019 -1.540257 0.6962885
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x600002458000>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1668375262ead"
 [2] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM166831dc29bf1"
 [3] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM16683538bfa7a"
 [4] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM16683ae98a70" 
 [5] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM166836a7fc4a8"
 [6] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM166836a482837"
 [7] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1668327486964"
 [8] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM166832ff3862" 
 [9] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1668341ceab77"
[10] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM16683675b3361"
[11] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM16683148a5a4a"
[12] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1668372dbacf" 
[13] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM166834b436fb7"
[14] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM16683385b7dfb"
[15] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM166837eac06a4"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x600002440120>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x600002440120>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x600002440120>
> rowMedians(tmp)
  [1] -0.134915335  0.014382076 -0.631712579 -0.276966318 -0.788862385
  [6] -0.381827029 -0.224408690 -0.075455552 -0.024552103  0.714167162
 [11] -0.449029364 -0.159291872 -0.239386443 -0.049120932 -0.174329988
 [16] -0.297279662 -0.316826629 -0.500909799  0.220825892 -0.283814836
 [21] -0.238184617 -0.503123239 -0.372750178  0.069276490 -0.448330853
 [26] -0.178282501 -0.236582622 -0.239436781  0.481789288  0.454912243
 [31] -0.271887028 -0.052791502  0.827434323  0.096626693  0.375644005
 [36] -0.597290060  0.464581690  0.132874149 -0.204698609 -0.225218706
 [41] -0.501423712  0.321620442 -0.156655031  0.218699480 -0.431221230
 [46] -0.275112775  0.496703036 -0.261948899 -0.453964894  0.519023456
 [51]  0.253549493 -0.089159251  0.064891485 -0.114931397 -0.063569163
 [56]  0.142044566 -0.641723396  0.261614268  0.095933244 -0.182511519
 [61] -0.028012444 -0.192932662 -0.136820813 -0.651509996  0.151782824
 [66]  0.148444015  0.378876140  0.261312491 -0.771964617 -0.379656894
 [71]  0.114206536  0.112695745  0.208130212 -0.028569065  0.676399220
 [76]  0.588453259  0.741345970  0.456393166  0.031028421  0.005796196
 [81]  0.079700651  0.378324268  0.050788593 -0.253820689  0.454627735
 [86] -0.310272819  0.015444371 -0.217418975 -0.217164159  0.029840637
 [91] -0.051724134 -0.101871671 -0.006062760 -0.439931045  0.248019134
 [96]  0.316928227 -0.078427778  0.078814909  0.243780666  0.023626348
[101] -0.462260290  0.295726990  0.081265901 -0.320537793 -0.067081749
[106]  0.180870124  0.336616065  0.266216761  0.767189304  0.316840824
[111]  0.182155553  0.095648220 -0.205082873  0.283799995 -0.200159842
[116] -0.076046111 -0.275362878  0.299158438  0.159959143  0.421872073
[121]  0.304608966  0.469889420 -0.128873355 -0.618814301  0.134578677
[126] -0.153578698  0.664361799 -0.356810108 -0.247701921 -0.223302152
[131] -0.505270700  0.188483807  0.542090379  0.092516071 -0.253768195
[136] -0.242388063  0.289827438  0.335087272 -0.423159427 -0.285649755
[141]  0.188041762  0.043934360  0.212182578 -0.489428394 -0.432304253
[146]  0.021811054 -0.156141466 -0.072579326  0.380876281  0.705524650
[151] -0.117812014 -0.139055275 -0.119002336  0.124382589 -0.275314938
[156] -0.241436608 -0.300015258 -0.094194646 -0.542998916  1.005341568
[161]  0.067021218  0.222993578  0.116126876 -0.217368625  0.054811157
[166]  0.144024934 -0.327726732  0.139652299 -0.328102008 -0.046665171
[171]  0.280637600 -0.335112573  0.420343368  0.185750558  0.630667817
[176] -0.317820821 -0.022040483  0.246133680  0.290297668  0.344083446
[181]  0.115993466 -0.245281445  0.126910344  0.431494095  0.216153617
[186]  0.228545931  0.152932105  0.183616652  0.634307527 -0.401659459
[191]  0.557079762  0.183263436 -0.094361883 -0.211317492  0.146297546
[196]  0.084043550 -0.171109985 -0.220038085 -0.073347006  0.367206334
[201] -0.191452463 -0.566258367  0.095760540  0.563773806 -0.126640256
[206]  0.599721683 -0.149494548  0.360365504  0.123084263  0.124902021
[211] -0.274048173  0.237174864  0.339650929  0.137000529  0.528089389
[216] -0.434644767 -0.110885164  0.740613609 -0.111259066  0.192601414
[221]  0.056548361 -0.887612034  0.433107726 -0.052607371 -0.427245423
[226]  0.127114704  0.114841203  0.130582941 -0.320390599  0.193065650
> 
> proc.time()
   user  system elapsed 
  2.528  14.424  17.318 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.1 (2025-06-13) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002340000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002340000>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002340000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x600002340000>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x600002348000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002348000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x600002348000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002348000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002348000>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002348180>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002348180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002348180>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600002348180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002348180>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x600002348180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002348180>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x600002348180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002348180>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000237c180>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x60000237c180>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000237c180>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000237c180>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile16b075b95dce7" "BufferedMatrixFile16b0773fec66f"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile16b075b95dce7" "BufferedMatrixFile16b0773fec66f"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000234c120>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000234c120>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x60000234c120>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x60000234c120>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x60000234c120>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x60000234c120>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002330000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002330000>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600002330000>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x600002330000>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002330180>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002330180>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.312   0.142   0.447 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.1 (2025-06-13) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.325   0.087   0.402 

Example timings