Back to Multiple platform build/check report for BioC 3.22:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-09-03 12:04 -0400 (Wed, 03 Sep 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 (2025-06-13) -- "Great Square Root" 4826
lconwaymacOS 12.7.1 Montereyx86_644.5.1 (2025-06-13) -- "Great Square Root" 4616
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" 4563
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4541
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 252/2321HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.73.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-09-02 13:45 -0400 (Tue, 02 Sep 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: 0147962
git_last_commit_date: 2025-04-15 09:39:39 -0400 (Tue, 15 Apr 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on lconway

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.73.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz
StartedAt: 2025-09-02 19:34:12 -0400 (Tue, 02 Sep 2025)
EndedAt: 2025-09-02 19:35:01 -0400 (Tue, 02 Sep 2025)
EllapsedTime: 49.5 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.1 (2025-06-13)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.73.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
* used SDK: ‘MacOSX11.3.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.73.0’
** using staged installation
** libs
using C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
using SDK: ‘MacOSX11.3.sdk’
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch x86_64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/x86_64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R
installing to /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.1 (2025-06-13) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.330   0.140   0.461 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.1 (2025-06-13) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 480847 25.7    1056617 56.5         NA   634462 33.9
Vcells 891074  6.8    8388608 64.0      98304  2108713 16.1
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Sep  2 19:34:35 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Sep  2 19:34:35 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x6000002ac000>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Sep  2 19:34:40 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Sep  2 19:34:41 2025"
> 
> ColMode(tmp2)
<pointer: 0x6000002ac000>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]       [,2]       [,3]       [,4]
[1,] 99.88339115  0.2979508 -0.5275401  1.3414522
[2,] -0.75855468 -0.5442864  1.0113511  0.4102808
[3,]  0.02683285  1.6527860  1.4785566  0.2556818
[4,]  0.12816091  1.4242333  0.8438792 -0.7012782
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]      [,2]      [,3]      [,4]
[1,] 99.88339115 0.2979508 0.5275401 1.3414522
[2,]  0.75855468 0.5442864 1.0113511 0.4102808
[3,]  0.02683285 1.6527860 1.4785566 0.2556818
[4,]  0.12816091 1.4242333 0.8438792 0.7012782
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9941679 0.5458487 0.7263195 1.1582108
[2,] 0.8709504 0.7377577 1.0056595 0.6405316
[3,] 0.1638074 1.2856072 1.2159591 0.5056499
[4,] 0.3579957 1.1934125 0.9186290 0.8374236
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 224.82507 30.75644 32.79074 37.92356
[2,]  34.46806 32.92186 36.06795 31.81560
[3,]  26.66491 39.50886 38.63815 30.31218
[4,]  28.70812 38.35836 35.03017 34.07551
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x6000002b4000>
> exp(tmp5)
<pointer: 0x6000002b4000>
> log(tmp5,2)
<pointer: 0x6000002b4000>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 467.9439
> Min(tmp5)
[1] 53.47481
> mean(tmp5)
[1] 72.05958
> Sum(tmp5)
[1] 14411.92
> Var(tmp5)
[1] 866.0646
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 89.22423 69.43448 69.96824 68.48204 73.93387 69.43724 71.77492 70.78240
 [9] 68.66214 68.89627
> rowSums(tmp5)
 [1] 1784.485 1388.690 1399.365 1369.641 1478.677 1388.745 1435.498 1415.648
 [9] 1373.243 1377.925
> rowVars(tmp5)
 [1] 8001.43543   54.70639   79.63144   80.45830   82.90666   67.26397
 [7]   65.63721   82.28966   93.34726   92.32703
> rowSd(tmp5)
 [1] 89.450743  7.396377  8.923645  8.969855  9.105309  8.201462  8.101680
 [8]  9.071365  9.661639  9.608695
> rowMax(tmp5)
 [1] 467.94393  80.72706  87.00497  84.32400  88.70546  84.57800  82.86538
 [8]  90.97855  89.65165  88.72721
> rowMin(tmp5)
 [1] 55.69821 56.16098 55.49951 54.05797 56.29338 55.67232 54.11052 57.80671
 [9] 53.47481 56.38886
> 
> colMeans(tmp5)
 [1] 107.30188  73.09935  69.52383  71.76654  68.11948  68.67369  70.23993
 [8]  68.94588  73.38998  70.03105  67.10965  68.87200  71.49141  72.59988
[15]  73.35614  66.93203  71.30746  64.97522  75.40776  68.04850
> colSums(tmp5)
 [1] 1073.0188  730.9935  695.2383  717.6654  681.1948  686.7369  702.3993
 [8]  689.4588  733.8998  700.3105  671.0965  688.7200  714.9141  725.9988
[15]  733.5614  669.3203  713.0746  649.7522  754.0776  680.4850
> colVars(tmp5)
 [1] 16100.94725    67.97513    55.88431    92.78219    79.15725    63.11225
 [7]    21.47586    47.02775   146.32058   126.46946    70.99437    56.55354
[13]    28.31614    99.30873    87.51743   105.24663    44.83758    46.03749
[19]   151.44391    61.79959
> colSd(tmp5)
 [1] 126.889508   8.244703   7.475581   9.632351   8.897036   7.944322
 [7]   4.634205   6.857678  12.096305  11.245864   8.425816   7.520209
[13]   5.321291   9.965377   9.355075  10.258978   6.696087   6.785093
[19]  12.306255   7.861271
> colMax(tmp5)
 [1] 467.94393  84.02676  80.42024  86.92100  80.60518  82.59553  77.99659
 [8]  78.31828  84.57800  88.03975  77.28536  81.51074  80.39045  84.26151
[15]  87.00497  89.65165  82.15924  79.70887  90.97855  78.06031
> colMin(tmp5)
 [1] 55.49951 58.67866 57.85244 54.38665 56.41460 54.11052 62.33923 58.60123
 [9] 53.47481 56.29338 53.76508 57.79156 66.28337 56.38886 54.05797 55.52202
[17] 57.55896 56.16098 57.11626 55.67232
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 89.22423 69.43448 69.96824 68.48204 73.93387 69.43724       NA 70.78240
 [9] 68.66214 68.89627
> rowSums(tmp5)
 [1] 1784.485 1388.690 1399.365 1369.641 1478.677 1388.745       NA 1415.648
 [9] 1373.243 1377.925
> rowVars(tmp5)
 [1] 8001.43543   54.70639   79.63144   80.45830   82.90666   67.26397
 [7]   69.27858   82.28966   93.34726   92.32703
> rowSd(tmp5)
 [1] 89.450743  7.396377  8.923645  8.969855  9.105309  8.201462  8.323375
 [8]  9.071365  9.661639  9.608695
> rowMax(tmp5)
 [1] 467.94393  80.72706  87.00497  84.32400  88.70546  84.57800        NA
 [8]  90.97855  89.65165  88.72721
> rowMin(tmp5)
 [1] 55.69821 56.16098 55.49951 54.05797 56.29338 55.67232       NA 57.80671
 [9] 53.47481 56.38886
> 
> colMeans(tmp5)
 [1] 107.30188  73.09935  69.52383  71.76654  68.11948  68.67369  70.23993
 [8]  68.94588  73.38998  70.03105  67.10965  68.87200        NA  72.59988
[15]  73.35614  66.93203  71.30746  64.97522  75.40776  68.04850
> colSums(tmp5)
 [1] 1073.0188  730.9935  695.2383  717.6654  681.1948  686.7369  702.3993
 [8]  689.4588  733.8998  700.3105  671.0965  688.7200        NA  725.9988
[15]  733.5614  669.3203  713.0746  649.7522  754.0776  680.4850
> colVars(tmp5)
 [1] 16100.94725    67.97513    55.88431    92.78219    79.15725    63.11225
 [7]    21.47586    47.02775   146.32058   126.46946    70.99437    56.55354
[13]          NA    99.30873    87.51743   105.24663    44.83758    46.03749
[19]   151.44391    61.79959
> colSd(tmp5)
 [1] 126.889508   8.244703   7.475581   9.632351   8.897036   7.944322
 [7]   4.634205   6.857678  12.096305  11.245864   8.425816   7.520209
[13]         NA   9.965377   9.355075  10.258978   6.696087   6.785093
[19]  12.306255   7.861271
> colMax(tmp5)
 [1] 467.94393  84.02676  80.42024  86.92100  80.60518  82.59553  77.99659
 [8]  78.31828  84.57800  88.03975  77.28536  81.51074        NA  84.26151
[15]  87.00497  89.65165  82.15924  79.70887  90.97855  78.06031
> colMin(tmp5)
 [1] 55.49951 58.67866 57.85244 54.38665 56.41460 54.11052 62.33923 58.60123
 [9] 53.47481 56.29338 53.76508 57.79156       NA 56.38886 54.05797 55.52202
[17] 57.55896 56.16098 57.11626 55.67232
> 
> Max(tmp5,na.rm=TRUE)
[1] 467.9439
> Min(tmp5,na.rm=TRUE)
[1] 53.47481
> mean(tmp5,na.rm=TRUE)
[1] 72.05952
> Sum(tmp5,na.rm=TRUE)
[1] 14339.85
> Var(tmp5,na.rm=TRUE)
[1] 870.4387
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.22423 69.43448 69.96824 68.48204 73.93387 69.43724 71.75930 70.78240
 [9] 68.66214 68.89627
> rowSums(tmp5,na.rm=TRUE)
 [1] 1784.485 1388.690 1399.365 1369.641 1478.677 1388.745 1363.427 1415.648
 [9] 1373.243 1377.925
> rowVars(tmp5,na.rm=TRUE)
 [1] 8001.43543   54.70639   79.63144   80.45830   82.90666   67.26397
 [7]   69.27858   82.28966   93.34726   92.32703
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.450743  7.396377  8.923645  8.969855  9.105309  8.201462  8.323375
 [8]  9.071365  9.661639  9.608695
> rowMax(tmp5,na.rm=TRUE)
 [1] 467.94393  80.72706  87.00497  84.32400  88.70546  84.57800  82.86538
 [8]  90.97855  89.65165  88.72721
> rowMin(tmp5,na.rm=TRUE)
 [1] 55.69821 56.16098 55.49951 54.05797 56.29338 55.67232 54.11052 57.80671
 [9] 53.47481 56.38886
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 107.30188  73.09935  69.52383  71.76654  68.11948  68.67369  70.23993
 [8]  68.94588  73.38998  70.03105  67.10965  68.87200  71.42694  72.59988
[15]  73.35614  66.93203  71.30746  64.97522  75.40776  68.04850
> colSums(tmp5,na.rm=TRUE)
 [1] 1073.0188  730.9935  695.2383  717.6654  681.1948  686.7369  702.3993
 [8]  689.4588  733.8998  700.3105  671.0965  688.7200  642.8425  725.9988
[15]  733.5614  669.3203  713.0746  649.7522  754.0776  680.4850
> colVars(tmp5,na.rm=TRUE)
 [1] 16100.94725    67.97513    55.88431    92.78219    79.15725    63.11225
 [7]    21.47586    47.02775   146.32058   126.46946    70.99437    56.55354
[13]    31.80891    99.30873    87.51743   105.24663    44.83758    46.03749
[19]   151.44391    61.79959
> colSd(tmp5,na.rm=TRUE)
 [1] 126.889508   8.244703   7.475581   9.632351   8.897036   7.944322
 [7]   4.634205   6.857678  12.096305  11.245864   8.425816   7.520209
[13]   5.639938   9.965377   9.355075  10.258978   6.696087   6.785093
[19]  12.306255   7.861271
> colMax(tmp5,na.rm=TRUE)
 [1] 467.94393  84.02676  80.42024  86.92100  80.60518  82.59553  77.99659
 [8]  78.31828  84.57800  88.03975  77.28536  81.51074  80.39045  84.26151
[15]  87.00497  89.65165  82.15924  79.70887  90.97855  78.06031
> colMin(tmp5,na.rm=TRUE)
 [1] 55.49951 58.67866 57.85244 54.38665 56.41460 54.11052 62.33923 58.60123
 [9] 53.47481 56.29338 53.76508 57.79156 66.28337 56.38886 54.05797 55.52202
[17] 57.55896 56.16098 57.11626 55.67232
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.22423 69.43448 69.96824 68.48204 73.93387 69.43724      NaN 70.78240
 [9] 68.66214 68.89627
> rowSums(tmp5,na.rm=TRUE)
 [1] 1784.485 1388.690 1399.365 1369.641 1478.677 1388.745    0.000 1415.648
 [9] 1373.243 1377.925
> rowVars(tmp5,na.rm=TRUE)
 [1] 8001.43543   54.70639   79.63144   80.45830   82.90666   67.26397
 [7]         NA   82.28966   93.34726   92.32703
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.450743  7.396377  8.923645  8.969855  9.105309  8.201462        NA
 [8]  9.071365  9.661639  9.608695
> rowMax(tmp5,na.rm=TRUE)
 [1] 467.94393  80.72706  87.00497  84.32400  88.70546  84.57800        NA
 [8]  90.97855  89.65165  88.72721
> rowMin(tmp5,na.rm=TRUE)
 [1] 55.69821 56.16098 55.49951 54.05797 56.29338 55.67232       NA 57.80671
 [9] 53.47481 56.38886
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 111.75999  72.57912  68.45331  70.83811  67.46105  70.29182  70.43753
 [8]  68.86799  72.98116  68.60501  65.97902  68.87612       NaN  72.35170
[15]  73.31491  68.19981  70.10171  64.79994  77.06464  67.43439
> colSums(tmp5,na.rm=TRUE)
 [1] 1005.8399  653.2121  616.0798  637.5430  607.1494  632.6263  633.9378
 [8]  619.8119  656.8304  617.4451  593.8112  619.8851    0.0000  651.1653
[15]  659.8342  613.7983  630.9154  583.1994  693.5818  606.9095
> colVars(tmp5,na.rm=TRUE)
 [1] 17889.97443    73.42737    49.97720    94.68254    84.17458    41.54492
 [7]    23.72107    52.83796   162.73035   119.40034    65.48742    63.62254
[13]          NA   111.02941    98.43798   100.32075    34.08658    51.44652
[19]   139.49043    65.28187
> colSd(tmp5,na.rm=TRUE)
 [1] 133.753409   8.568977   7.069455   9.730495   9.174670   6.445535
 [7]   4.870428   7.268972  12.756581  10.927046   8.092430   7.976374
[13]         NA  10.537049   9.921592  10.016025   5.838371   7.172623
[19]  11.810607   8.079719
> colMax(tmp5,na.rm=TRUE)
 [1] 467.94393  84.02676  80.42024  86.92100  80.60518  82.59553  77.99659
 [8]  78.31828  84.57800  88.03975  76.86517  81.51074      -Inf  84.26151
[15]  87.00497  89.65165  77.11816  79.70887  90.97855  78.06031
> colMin(tmp5,na.rm=TRUE)
 [1] 55.49951 58.67866 57.85244 54.38665 56.41460 60.81412 62.33923 58.60123
 [9] 53.47481 56.29338 53.76508 57.79156      Inf 56.38886 54.05797 57.03371
[17] 57.55896 56.16098 57.11626 55.67232
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 202.6219 351.1204 178.7045 247.6029 122.1902 256.5813 179.8176 141.7750
 [9] 175.5500 349.7771
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 202.6219 351.1204 178.7045 247.6029 122.1902 256.5813 179.8176 141.7750
 [9] 175.5500 349.7771
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  1.136868e-13  1.421085e-14  0.000000e+00  0.000000e+00  0.000000e+00
 [6]  0.000000e+00  0.000000e+00  5.684342e-14 -1.136868e-13 -2.842171e-14
[11] -2.842171e-14  1.705303e-13  1.421085e-13 -2.273737e-13  1.136868e-13
[16]  1.136868e-13  5.684342e-14  8.526513e-14 -1.421085e-13 -5.684342e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
3   20 
4   2 
6   13 
3   14 
7   5 
10   20 
1   6 
8   12 
9   17 
7   18 
2   7 
4   17 
6   5 
2   8 
1   8 
9   18 
5   2 
4   7 
9   7 
1   17 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.564157
> Min(tmp)
[1] -2.542668
> mean(tmp)
[1] -0.04259226
> Sum(tmp)
[1] -4.259226
> Var(tmp)
[1] 1.039109
> 
> rowMeans(tmp)
[1] -0.04259226
> rowSums(tmp)
[1] -4.259226
> rowVars(tmp)
[1] 1.039109
> rowSd(tmp)
[1] 1.019367
> rowMax(tmp)
[1] 2.564157
> rowMin(tmp)
[1] -2.542668
> 
> colMeans(tmp)
  [1] -1.03434917  0.02336005 -1.17346762 -1.60354208  0.53930320  1.03866180
  [7] -0.60901496  2.56415728 -1.90538950 -1.09480253 -2.54266769  1.92300145
 [13] -1.00310600  0.73728531 -1.13412601  0.22015130 -1.40961759 -1.90374223
 [19]  1.84208796  2.50876449  0.56594689 -0.29675554  0.53034144  1.05341516
 [25] -0.14546173 -1.49977388 -0.77397580 -1.29067637 -0.16296944  1.67677909
 [31]  0.35977609  0.50252492  0.36575288 -0.50370871 -0.73449363 -1.05459167
 [37] -0.36621259 -0.83337425  0.74846123  0.38671210 -0.18079966  0.31701441
 [43]  0.29540022 -0.96544998 -0.39573778  0.01176467 -0.50087137  0.13872300
 [49]  0.62355681  1.25354168  0.44285675  0.75771795  1.05654514 -0.55138952
 [55] -0.74893037 -1.07972844  0.17221985  1.23276779 -0.48108480 -0.71082144
 [61] -0.69489793 -1.35337248 -2.39723952  0.66534789  0.90339078  0.56521428
 [67]  0.30578627  0.72480364  0.29893365  1.29796361 -0.21694502  0.06162590
 [73]  1.85376431 -0.27063590 -0.64610078  1.61912407 -0.89886322 -0.57083151
 [79] -0.06968708  1.40506885 -0.35620882 -0.82599063 -0.17771215  0.43802588
 [85]  0.34782483 -1.61708942  0.70746803  0.12311697  0.19311736 -0.56112505
 [91] -1.38605368 -0.25908061  1.65069949 -0.34533486 -0.93655832 -0.70965229
 [97]  0.55440144 -0.06192367  0.41242701  0.77001422
> colSums(tmp)
  [1] -1.03434917  0.02336005 -1.17346762 -1.60354208  0.53930320  1.03866180
  [7] -0.60901496  2.56415728 -1.90538950 -1.09480253 -2.54266769  1.92300145
 [13] -1.00310600  0.73728531 -1.13412601  0.22015130 -1.40961759 -1.90374223
 [19]  1.84208796  2.50876449  0.56594689 -0.29675554  0.53034144  1.05341516
 [25] -0.14546173 -1.49977388 -0.77397580 -1.29067637 -0.16296944  1.67677909
 [31]  0.35977609  0.50252492  0.36575288 -0.50370871 -0.73449363 -1.05459167
 [37] -0.36621259 -0.83337425  0.74846123  0.38671210 -0.18079966  0.31701441
 [43]  0.29540022 -0.96544998 -0.39573778  0.01176467 -0.50087137  0.13872300
 [49]  0.62355681  1.25354168  0.44285675  0.75771795  1.05654514 -0.55138952
 [55] -0.74893037 -1.07972844  0.17221985  1.23276779 -0.48108480 -0.71082144
 [61] -0.69489793 -1.35337248 -2.39723952  0.66534789  0.90339078  0.56521428
 [67]  0.30578627  0.72480364  0.29893365  1.29796361 -0.21694502  0.06162590
 [73]  1.85376431 -0.27063590 -0.64610078  1.61912407 -0.89886322 -0.57083151
 [79] -0.06968708  1.40506885 -0.35620882 -0.82599063 -0.17771215  0.43802588
 [85]  0.34782483 -1.61708942  0.70746803  0.12311697  0.19311736 -0.56112505
 [91] -1.38605368 -0.25908061  1.65069949 -0.34533486 -0.93655832 -0.70965229
 [97]  0.55440144 -0.06192367  0.41242701  0.77001422
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -1.03434917  0.02336005 -1.17346762 -1.60354208  0.53930320  1.03866180
  [7] -0.60901496  2.56415728 -1.90538950 -1.09480253 -2.54266769  1.92300145
 [13] -1.00310600  0.73728531 -1.13412601  0.22015130 -1.40961759 -1.90374223
 [19]  1.84208796  2.50876449  0.56594689 -0.29675554  0.53034144  1.05341516
 [25] -0.14546173 -1.49977388 -0.77397580 -1.29067637 -0.16296944  1.67677909
 [31]  0.35977609  0.50252492  0.36575288 -0.50370871 -0.73449363 -1.05459167
 [37] -0.36621259 -0.83337425  0.74846123  0.38671210 -0.18079966  0.31701441
 [43]  0.29540022 -0.96544998 -0.39573778  0.01176467 -0.50087137  0.13872300
 [49]  0.62355681  1.25354168  0.44285675  0.75771795  1.05654514 -0.55138952
 [55] -0.74893037 -1.07972844  0.17221985  1.23276779 -0.48108480 -0.71082144
 [61] -0.69489793 -1.35337248 -2.39723952  0.66534789  0.90339078  0.56521428
 [67]  0.30578627  0.72480364  0.29893365  1.29796361 -0.21694502  0.06162590
 [73]  1.85376431 -0.27063590 -0.64610078  1.61912407 -0.89886322 -0.57083151
 [79] -0.06968708  1.40506885 -0.35620882 -0.82599063 -0.17771215  0.43802588
 [85]  0.34782483 -1.61708942  0.70746803  0.12311697  0.19311736 -0.56112505
 [91] -1.38605368 -0.25908061  1.65069949 -0.34533486 -0.93655832 -0.70965229
 [97]  0.55440144 -0.06192367  0.41242701  0.77001422
> colMin(tmp)
  [1] -1.03434917  0.02336005 -1.17346762 -1.60354208  0.53930320  1.03866180
  [7] -0.60901496  2.56415728 -1.90538950 -1.09480253 -2.54266769  1.92300145
 [13] -1.00310600  0.73728531 -1.13412601  0.22015130 -1.40961759 -1.90374223
 [19]  1.84208796  2.50876449  0.56594689 -0.29675554  0.53034144  1.05341516
 [25] -0.14546173 -1.49977388 -0.77397580 -1.29067637 -0.16296944  1.67677909
 [31]  0.35977609  0.50252492  0.36575288 -0.50370871 -0.73449363 -1.05459167
 [37] -0.36621259 -0.83337425  0.74846123  0.38671210 -0.18079966  0.31701441
 [43]  0.29540022 -0.96544998 -0.39573778  0.01176467 -0.50087137  0.13872300
 [49]  0.62355681  1.25354168  0.44285675  0.75771795  1.05654514 -0.55138952
 [55] -0.74893037 -1.07972844  0.17221985  1.23276779 -0.48108480 -0.71082144
 [61] -0.69489793 -1.35337248 -2.39723952  0.66534789  0.90339078  0.56521428
 [67]  0.30578627  0.72480364  0.29893365  1.29796361 -0.21694502  0.06162590
 [73]  1.85376431 -0.27063590 -0.64610078  1.61912407 -0.89886322 -0.57083151
 [79] -0.06968708  1.40506885 -0.35620882 -0.82599063 -0.17771215  0.43802588
 [85]  0.34782483 -1.61708942  0.70746803  0.12311697  0.19311736 -0.56112505
 [91] -1.38605368 -0.25908061  1.65069949 -0.34533486 -0.93655832 -0.70965229
 [97]  0.55440144 -0.06192367  0.41242701  0.77001422
> colMedians(tmp)
  [1] -1.03434917  0.02336005 -1.17346762 -1.60354208  0.53930320  1.03866180
  [7] -0.60901496  2.56415728 -1.90538950 -1.09480253 -2.54266769  1.92300145
 [13] -1.00310600  0.73728531 -1.13412601  0.22015130 -1.40961759 -1.90374223
 [19]  1.84208796  2.50876449  0.56594689 -0.29675554  0.53034144  1.05341516
 [25] -0.14546173 -1.49977388 -0.77397580 -1.29067637 -0.16296944  1.67677909
 [31]  0.35977609  0.50252492  0.36575288 -0.50370871 -0.73449363 -1.05459167
 [37] -0.36621259 -0.83337425  0.74846123  0.38671210 -0.18079966  0.31701441
 [43]  0.29540022 -0.96544998 -0.39573778  0.01176467 -0.50087137  0.13872300
 [49]  0.62355681  1.25354168  0.44285675  0.75771795  1.05654514 -0.55138952
 [55] -0.74893037 -1.07972844  0.17221985  1.23276779 -0.48108480 -0.71082144
 [61] -0.69489793 -1.35337248 -2.39723952  0.66534789  0.90339078  0.56521428
 [67]  0.30578627  0.72480364  0.29893365  1.29796361 -0.21694502  0.06162590
 [73]  1.85376431 -0.27063590 -0.64610078  1.61912407 -0.89886322 -0.57083151
 [79] -0.06968708  1.40506885 -0.35620882 -0.82599063 -0.17771215  0.43802588
 [85]  0.34782483 -1.61708942  0.70746803  0.12311697  0.19311736 -0.56112505
 [91] -1.38605368 -0.25908061  1.65069949 -0.34533486 -0.93655832 -0.70965229
 [97]  0.55440144 -0.06192367  0.41242701  0.77001422
> colRanges(tmp)
          [,1]       [,2]      [,3]      [,4]      [,5]     [,6]      [,7]
[1,] -1.034349 0.02336005 -1.173468 -1.603542 0.5393032 1.038662 -0.609015
[2,] -1.034349 0.02336005 -1.173468 -1.603542 0.5393032 1.038662 -0.609015
         [,8]      [,9]     [,10]     [,11]    [,12]     [,13]     [,14]
[1,] 2.564157 -1.905389 -1.094803 -2.542668 1.923001 -1.003106 0.7372853
[2,] 2.564157 -1.905389 -1.094803 -2.542668 1.923001 -1.003106 0.7372853
         [,15]     [,16]     [,17]     [,18]    [,19]    [,20]     [,21]
[1,] -1.134126 0.2201513 -1.409618 -1.903742 1.842088 2.508764 0.5659469
[2,] -1.134126 0.2201513 -1.409618 -1.903742 1.842088 2.508764 0.5659469
          [,22]     [,23]    [,24]      [,25]     [,26]      [,27]     [,28]
[1,] -0.2967555 0.5303414 1.053415 -0.1454617 -1.499774 -0.7739758 -1.290676
[2,] -0.2967555 0.5303414 1.053415 -0.1454617 -1.499774 -0.7739758 -1.290676
          [,29]    [,30]     [,31]     [,32]     [,33]      [,34]      [,35]
[1,] -0.1629694 1.676779 0.3597761 0.5025249 0.3657529 -0.5037087 -0.7344936
[2,] -0.1629694 1.676779 0.3597761 0.5025249 0.3657529 -0.5037087 -0.7344936
         [,36]      [,37]      [,38]     [,39]     [,40]      [,41]     [,42]
[1,] -1.054592 -0.3662126 -0.8333743 0.7484612 0.3867121 -0.1807997 0.3170144
[2,] -1.054592 -0.3662126 -0.8333743 0.7484612 0.3867121 -0.1807997 0.3170144
         [,43]    [,44]      [,45]      [,46]      [,47]    [,48]     [,49]
[1,] 0.2954002 -0.96545 -0.3957378 0.01176467 -0.5008714 0.138723 0.6235568
[2,] 0.2954002 -0.96545 -0.3957378 0.01176467 -0.5008714 0.138723 0.6235568
        [,50]     [,51]    [,52]    [,53]      [,54]      [,55]     [,56]
[1,] 1.253542 0.4428568 0.757718 1.056545 -0.5513895 -0.7489304 -1.079728
[2,] 1.253542 0.4428568 0.757718 1.056545 -0.5513895 -0.7489304 -1.079728
         [,57]    [,58]      [,59]      [,60]      [,61]     [,62]    [,63]
[1,] 0.1722198 1.232768 -0.4810848 -0.7108214 -0.6948979 -1.353372 -2.39724
[2,] 0.1722198 1.232768 -0.4810848 -0.7108214 -0.6948979 -1.353372 -2.39724
         [,64]     [,65]     [,66]     [,67]     [,68]     [,69]    [,70]
[1,] 0.6653479 0.9033908 0.5652143 0.3057863 0.7248036 0.2989337 1.297964
[2,] 0.6653479 0.9033908 0.5652143 0.3057863 0.7248036 0.2989337 1.297964
         [,71]     [,72]    [,73]      [,74]      [,75]    [,76]      [,77]
[1,] -0.216945 0.0616259 1.853764 -0.2706359 -0.6461008 1.619124 -0.8988632
[2,] -0.216945 0.0616259 1.853764 -0.2706359 -0.6461008 1.619124 -0.8988632
          [,78]       [,79]    [,80]      [,81]      [,82]      [,83]     [,84]
[1,] -0.5708315 -0.06968708 1.405069 -0.3562088 -0.8259906 -0.1777122 0.4380259
[2,] -0.5708315 -0.06968708 1.405069 -0.3562088 -0.8259906 -0.1777122 0.4380259
         [,85]     [,86]    [,87]    [,88]     [,89]     [,90]     [,91]
[1,] 0.3478248 -1.617089 0.707468 0.123117 0.1931174 -0.561125 -1.386054
[2,] 0.3478248 -1.617089 0.707468 0.123117 0.1931174 -0.561125 -1.386054
          [,92]    [,93]      [,94]      [,95]      [,96]     [,97]       [,98]
[1,] -0.2590806 1.650699 -0.3453349 -0.9365583 -0.7096523 0.5544014 -0.06192367
[2,] -0.2590806 1.650699 -0.3453349 -0.9365583 -0.7096523 0.5544014 -0.06192367
        [,99]    [,100]
[1,] 0.412427 0.7700142
[2,] 0.412427 0.7700142
> 
> 
> Max(tmp2)
[1] 2.585631
> Min(tmp2)
[1] -2.077722
> mean(tmp2)
[1] -0.02081897
> Sum(tmp2)
[1] -2.081897
> Var(tmp2)
[1] 0.8450015
> 
> rowMeans(tmp2)
  [1]  2.088626588  0.517629503  1.765809501  0.035751897  0.359611177
  [6] -0.865894153 -1.204768902 -0.080004335 -0.007573607 -0.571393986
 [11] -0.051483612  0.316629549 -1.169956933  0.211059697 -1.689017381
 [16]  0.692849317 -0.182889599 -1.692923021  0.934843844 -0.490965966
 [21]  0.212349728 -0.128118719 -0.658214114  1.273781994 -0.061694539
 [26] -0.072136919 -0.902317131  0.601564352  1.905108569  0.477246471
 [31] -0.959369380  0.322922637  0.461912834 -0.279028379 -0.628023867
 [36] -1.091743676 -1.291469349  0.492041167 -0.351336234  0.775279594
 [41]  0.878515308 -0.787879645 -0.486733450  0.336840122 -1.233659772
 [46] -0.441120795 -0.786816909 -1.156861264 -0.556286899  0.641667459
 [51]  0.970177814 -0.081909217  0.630937017 -0.448702938 -0.205631327
 [56] -0.231542849  1.171896210  0.202660495 -0.099491229 -1.390616994
 [61]  0.190733043 -2.077721784 -0.392148992 -0.636169069  0.749953211
 [66] -0.030593070 -0.559481659  0.843320111  0.652862080 -0.762348602
 [71]  2.585630895  0.241707027 -0.741909057  1.338201617  1.090112900
 [76] -1.671178176 -1.904034141 -1.779174466 -0.518501989  0.230493548
 [81] -0.546624116 -0.118516469  0.691984453  0.593504395  0.176166426
 [86] -0.339055025 -0.789682629  1.408033596  0.286634948  1.383169467
 [91] -0.371621067  1.112894513 -0.401390265  0.183857130  0.749037838
 [96]  0.467917783  0.762282430  0.005983758  1.363047406 -1.489411192
> rowSums(tmp2)
  [1]  2.088626588  0.517629503  1.765809501  0.035751897  0.359611177
  [6] -0.865894153 -1.204768902 -0.080004335 -0.007573607 -0.571393986
 [11] -0.051483612  0.316629549 -1.169956933  0.211059697 -1.689017381
 [16]  0.692849317 -0.182889599 -1.692923021  0.934843844 -0.490965966
 [21]  0.212349728 -0.128118719 -0.658214114  1.273781994 -0.061694539
 [26] -0.072136919 -0.902317131  0.601564352  1.905108569  0.477246471
 [31] -0.959369380  0.322922637  0.461912834 -0.279028379 -0.628023867
 [36] -1.091743676 -1.291469349  0.492041167 -0.351336234  0.775279594
 [41]  0.878515308 -0.787879645 -0.486733450  0.336840122 -1.233659772
 [46] -0.441120795 -0.786816909 -1.156861264 -0.556286899  0.641667459
 [51]  0.970177814 -0.081909217  0.630937017 -0.448702938 -0.205631327
 [56] -0.231542849  1.171896210  0.202660495 -0.099491229 -1.390616994
 [61]  0.190733043 -2.077721784 -0.392148992 -0.636169069  0.749953211
 [66] -0.030593070 -0.559481659  0.843320111  0.652862080 -0.762348602
 [71]  2.585630895  0.241707027 -0.741909057  1.338201617  1.090112900
 [76] -1.671178176 -1.904034141 -1.779174466 -0.518501989  0.230493548
 [81] -0.546624116 -0.118516469  0.691984453  0.593504395  0.176166426
 [86] -0.339055025 -0.789682629  1.408033596  0.286634948  1.383169467
 [91] -0.371621067  1.112894513 -0.401390265  0.183857130  0.749037838
 [96]  0.467917783  0.762282430  0.005983758  1.363047406 -1.489411192
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  2.088626588  0.517629503  1.765809501  0.035751897  0.359611177
  [6] -0.865894153 -1.204768902 -0.080004335 -0.007573607 -0.571393986
 [11] -0.051483612  0.316629549 -1.169956933  0.211059697 -1.689017381
 [16]  0.692849317 -0.182889599 -1.692923021  0.934843844 -0.490965966
 [21]  0.212349728 -0.128118719 -0.658214114  1.273781994 -0.061694539
 [26] -0.072136919 -0.902317131  0.601564352  1.905108569  0.477246471
 [31] -0.959369380  0.322922637  0.461912834 -0.279028379 -0.628023867
 [36] -1.091743676 -1.291469349  0.492041167 -0.351336234  0.775279594
 [41]  0.878515308 -0.787879645 -0.486733450  0.336840122 -1.233659772
 [46] -0.441120795 -0.786816909 -1.156861264 -0.556286899  0.641667459
 [51]  0.970177814 -0.081909217  0.630937017 -0.448702938 -0.205631327
 [56] -0.231542849  1.171896210  0.202660495 -0.099491229 -1.390616994
 [61]  0.190733043 -2.077721784 -0.392148992 -0.636169069  0.749953211
 [66] -0.030593070 -0.559481659  0.843320111  0.652862080 -0.762348602
 [71]  2.585630895  0.241707027 -0.741909057  1.338201617  1.090112900
 [76] -1.671178176 -1.904034141 -1.779174466 -0.518501989  0.230493548
 [81] -0.546624116 -0.118516469  0.691984453  0.593504395  0.176166426
 [86] -0.339055025 -0.789682629  1.408033596  0.286634948  1.383169467
 [91] -0.371621067  1.112894513 -0.401390265  0.183857130  0.749037838
 [96]  0.467917783  0.762282430  0.005983758  1.363047406 -1.489411192
> rowMin(tmp2)
  [1]  2.088626588  0.517629503  1.765809501  0.035751897  0.359611177
  [6] -0.865894153 -1.204768902 -0.080004335 -0.007573607 -0.571393986
 [11] -0.051483612  0.316629549 -1.169956933  0.211059697 -1.689017381
 [16]  0.692849317 -0.182889599 -1.692923021  0.934843844 -0.490965966
 [21]  0.212349728 -0.128118719 -0.658214114  1.273781994 -0.061694539
 [26] -0.072136919 -0.902317131  0.601564352  1.905108569  0.477246471
 [31] -0.959369380  0.322922637  0.461912834 -0.279028379 -0.628023867
 [36] -1.091743676 -1.291469349  0.492041167 -0.351336234  0.775279594
 [41]  0.878515308 -0.787879645 -0.486733450  0.336840122 -1.233659772
 [46] -0.441120795 -0.786816909 -1.156861264 -0.556286899  0.641667459
 [51]  0.970177814 -0.081909217  0.630937017 -0.448702938 -0.205631327
 [56] -0.231542849  1.171896210  0.202660495 -0.099491229 -1.390616994
 [61]  0.190733043 -2.077721784 -0.392148992 -0.636169069  0.749953211
 [66] -0.030593070 -0.559481659  0.843320111  0.652862080 -0.762348602
 [71]  2.585630895  0.241707027 -0.741909057  1.338201617  1.090112900
 [76] -1.671178176 -1.904034141 -1.779174466 -0.518501989  0.230493548
 [81] -0.546624116 -0.118516469  0.691984453  0.593504395  0.176166426
 [86] -0.339055025 -0.789682629  1.408033596  0.286634948  1.383169467
 [91] -0.371621067  1.112894513 -0.401390265  0.183857130  0.749037838
 [96]  0.467917783  0.762282430  0.005983758  1.363047406 -1.489411192
> 
> colMeans(tmp2)
[1] -0.02081897
> colSums(tmp2)
[1] -2.081897
> colVars(tmp2)
[1] 0.8450015
> colSd(tmp2)
[1] 0.9192396
> colMax(tmp2)
[1] 2.585631
> colMin(tmp2)
[1] -2.077722
> colMedians(tmp2)
[1] -0.05658908
> colRanges(tmp2)
          [,1]
[1,] -2.077722
[2,]  2.585631
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -4.7304238 -3.5766467 -1.0952036  2.3647371  1.2941128  0.5310096
 [7] -1.5987761 -4.0681797  2.0112670  1.5288552
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -1.38461232
[2,] -0.66440064
[3,] -0.30391043
[4,] -0.17983354
[5,]  0.06049162
> 
> rowApply(tmp,sum)
 [1] -3.79728155  0.04921066  4.97371685 -3.35959207 -0.63056402 -2.92079841
 [7]  1.99995861 -4.46166493  0.02337090  0.78439571
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    6    4    3    7    5    1    2    7    5     3
 [2,]    8    3    6    5    4    2    4    6    6     2
 [3,]    1    8    1    4    7    9    6    5    4     6
 [4,]    2    6    7    9    9   10   10    1    7     4
 [5,]    7    1    5   10   10    8    1    8    2    10
 [6,]    4    9    2    3    6    3    8    4   10     5
 [7,]    3   10    8    6    1    4    3   10    1     7
 [8,]    9    2    4    2    2    7    9    3    9     1
 [9,]    5    5   10    8    3    6    7    9    3     8
[10,]   10    7    9    1    8    5    5    2    8     9
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.3921454 -1.9220989 -0.3533479 -0.1576223 -2.3568826  1.5233837
 [7]  5.2261252 -1.0492909  2.8999705  4.0142628 -1.1438236  2.6694701
[13] -3.6726452 -7.4515976  2.9398209  3.2055531 -2.2386164  1.0692042
[19]  2.4887384  1.6766066
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.2306950
[2,]  0.1833453
[3,]  0.5016328
[4,]  0.7829497
[5,]  1.1549125
> 
> rowApply(tmp,sum)
[1]  1.859189  2.333336 -7.219584  8.591079  3.195336
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   15   10   19   13    4
[2,]    4    5   11    7    6
[3,]   12    8    9    2   19
[4,]   19    2   18    8    7
[5,]   13    3   13   15    1
> 
> 
> as.matrix(tmp)
           [,1]        [,2]       [,3]       [,4]       [,5]       [,6]
[1,]  0.5016328 -0.63551350  0.1663809  0.9111090  0.3109626 -0.7963058
[2,]  0.1833453 -0.58603250 -0.4195952 -1.6034189 -1.4930386  0.6956608
[3,]  1.1549125 -0.32601774 -0.4410008  0.6696553 -0.2250337 -0.4270981
[4,]  0.7829497 -0.05621056 -1.0713672  0.1038457  1.1262318  1.6495885
[5,] -1.2306950 -0.31832456  1.4122343 -0.2388135 -2.0760047  0.4015384
           [,7]       [,8]       [,9]      [,10]      [,11]     [,12]
[1,] -0.1619490 -0.6931259  0.8739076  1.7806793 -0.2604368 0.1162391
[2,]  2.2855380  0.4430709 -0.6111687  0.9876362  0.6852475 0.4760727
[3,]  1.3658877 -0.6195814  0.5889716 -1.7084155  0.4616738 0.2070638
[4,]  1.0146474 -0.6820221  1.7616856  2.1025028 -0.4112309 0.3583430
[5,]  0.7220012  0.5023676  0.2865744  0.8518600 -1.6190773 1.5117515
          [,13]      [,14]      [,15]      [,16]      [,17]       [,18]
[1,]  0.3354439 -1.1417438 -0.3184887  0.7654059 -0.2203140  0.63844881
[2,] -0.4693896 -2.1667303  1.3653722  0.8983941 -0.5719765  0.07566864
[3,] -1.0887000 -2.8935442  0.4602901 -1.2399244 -1.6254284 -0.65770474
[4,] -0.6677880 -2.1237458  0.4409576  1.5602714 -0.9477692  0.19374750
[5,] -1.7822115  0.8741664  0.9916897  1.2214061  1.1268717  0.81904400
           [,19]      [,20]
[1,] -0.01207434 -0.3010695
[2,]  0.72275191  1.4359282
[3,] -0.28725510 -0.5883352
[4,]  2.87008980  0.5863517
[5,] -0.80477387  0.5437314
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  650  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  563  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1        col2     col3      col4     col5       col6      col7
row1 -0.4730886 -0.02071233 1.571214 0.6176114 1.905682 -0.1279502 -2.173755
          col8       col9       col10      col11     col12     col13    col14
row1 0.9278642 -0.5176197 -0.05030555 0.07556458 0.4047049 0.3065918 1.468303
         col15     col16    col17    col18      col19     col20
row1 -1.402757 0.2871781 -1.43679 1.249404 -0.4081477 0.9751962
> tmp[,"col10"]
           col10
row1 -0.05030555
row2 -1.05583875
row3 -1.65218721
row4  0.61539225
row5  0.81210164
> tmp[c("row1","row5"),]
           col1        col2      col3       col4      col5       col6
row1 -0.4730886 -0.02071233 1.5712142  0.6176114  1.905682 -0.1279502
row5  1.7880350 -0.56558397 0.4134077 -0.7120675 -1.721036  0.1094702
           col7      col8        col9       col10      col11     col12
row1 -2.1737553 0.9278642 -0.51761968 -0.05030555 0.07556458 0.4047049
row5  0.5663496 0.5947190  0.06639936  0.81210164 1.64992192 0.2115201
         col13     col14     col15      col16      col17      col18       col19
row1 0.3065918  1.468303 -1.402757  0.2871781 -1.4367899  1.2494038 -0.40814767
row5 2.4327798 -1.732599  2.804931 -0.3408513  0.9725975 -0.9648512 -0.04696766
         col20
row1 0.9751962
row5 0.7677992
> tmp[,c("col6","col20")]
           col6      col20
row1 -0.1279502  0.9751962
row2 -0.5608086 -0.1632600
row3  0.2877997 -1.1534481
row4 -1.2194413  0.1057354
row5  0.1094702  0.7677992
> tmp[c("row1","row5"),c("col6","col20")]
           col6     col20
row1 -0.1279502 0.9751962
row5  0.1094702 0.7677992
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.81655 50.92677 49.67274 48.33158 51.05686 104.9972 50.68949 50.42562
         col9    col10    col11    col12    col13    col14    col15    col16
row1 52.03472 49.91743 48.80606 48.08424 50.65225 50.74005 52.01366 50.17284
        col17    col18   col19    col20
row1 51.10197 51.84482 50.9107 104.0446
> tmp[,"col10"]
        col10
row1 49.91743
row2 28.86620
row3 29.59128
row4 29.49728
row5 49.51997
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.81655 50.92677 49.67274 48.33158 51.05686 104.9972 50.68949 50.42562
row5 49.92961 49.13624 49.76385 50.70497 51.31479 106.8395 49.40354 50.83244
         col9    col10    col11    col12    col13    col14    col15    col16
row1 52.03472 49.91743 48.80606 48.08424 50.65225 50.74005 52.01366 50.17284
row5 48.80525 49.51997 46.79245 49.43739 50.82854 48.16599 49.31710 50.25417
        col17    col18   col19    col20
row1 51.10197 51.84482 50.9107 104.0446
row5 50.71129 51.06782 49.3814 105.5337
> tmp[,c("col6","col20")]
          col6     col20
row1 104.99719 104.04465
row2  75.07841  76.20254
row3  74.52886  75.04405
row4  75.64219  76.25213
row5 106.83953 105.53368
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.9972 104.0446
row5 106.8395 105.5337
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.9972 104.0446
row5 106.8395 105.5337
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  0.2224863
[2,] -1.5443655
[3,] -1.0298459
[4,] -0.1874784
[5,] -0.5233400
> tmp[,c("col17","col7")]
          col17       col7
[1,] -0.2519679 -2.0294595
[2,] -1.8777200 -0.9565739
[3,] -0.5834384 -0.7481516
[4,]  1.6741377  0.9752441
[5,] -0.4937818  0.1890237
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
            col6      col20
[1,]  1.82644772 -1.2595766
[2,]  1.48194133 -0.9282483
[3,]  0.39059361  0.9235198
[4,]  0.02870028  0.2534526
[5,] -0.11363879  1.8557117
> subBufferedMatrix(tmp,1,c("col6"))[,1]
         col1
[1,] 1.826448
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
         col6
[1,] 1.826448
[2,] 1.481941
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]      [,2]        [,3]       [,4]        [,5]       [,6]
row3 -2.5332067 0.3039642  0.06249885 -0.1638470 -0.04869433 -0.7257542
row1  0.6004229 0.1939870 -0.36984201 -0.1089237  0.64827586 -1.8132416
           [,7]       [,8]     [,9]      [,10]      [,11]      [,12]      [,13]
row3  0.2619306 -0.3930883 1.470910 -0.5190906  0.3636881 -1.0951120 0.01551575
row1 -1.0553925  0.5627381 1.500589 -2.1439126 -0.4680642 -0.5361232 0.77174991
         [,14]     [,15]      [,16]      [,17]      [,18]     [,19]     [,20]
row3 0.2098559 -1.039843  0.2761776 -0.4384534 -0.3403992 0.2312677 0.2578664
row1 0.2284086 -1.554126 -2.5978867 -0.9519570 -0.9113032 0.5958046 0.3932248
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
           [,1]        [,2]      [,3]     [,4]      [,5]      [,6]     [,7]
row2 -0.2945252 -0.08308923 -1.514748 1.162936 -1.111288 0.4876995 1.364422
          [,8]      [,9]    [,10]
row2 0.5919986 -1.047545 -1.20731
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]    [,2]       [,3]      [,4]     [,5]      [,6]       [,7]
row5 -0.392765 1.12008 -0.1116833 -1.663046 0.357312 0.9462566 -0.8233646
          [,8]     [,9]        [,10]     [,11]      [,12]      [,13]    [,14]
row5 -1.033042 2.011221 -0.007064352 0.8124108 -0.8518013 -0.3132929 1.973188
         [,15]     [,16]    [,17]   [,18]     [,19]     [,20]
row5 0.9104561 -1.748142 1.384636 1.64179 0.7823101 -0.369836
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x6000002e4300>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMf5326f530074"
 [2] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMf5323242f8c5"
 [3] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMf5324ada674a"
 [4] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMf53248b351aa"
 [5] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMf53274b6952f"
 [6] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMf5327efc7c85"
 [7] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMf532725340e4"
 [8] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMf53237c9735f"
 [9] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMf532ab57e96" 
[10] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMf5321189af58"
[11] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMf5326656c366"
[12] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMf5324a369207"
[13] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMf53244ad2fa1"
[14] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMf53246121640"
[15] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMf5324d72e7b0"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x6000002b40c0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x6000002b40c0>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x6000002b40c0>
> rowMedians(tmp)
  [1]  0.177177473  0.268522381 -0.344760199 -0.148652026  0.647629339
  [6]  0.074179293  0.045143195  0.052730308 -0.203928144  0.070594710
 [11]  0.010044010 -0.300407398 -0.501240112  0.206458828  0.160418157
 [16] -0.095139644  0.666114722 -0.443010328  0.059045058  0.352647589
 [21]  0.227394899  0.546831506 -0.188933119 -0.433397691  0.141576502
 [26]  0.137145059 -0.147950529 -0.238586718  0.086258673  0.758734504
 [31] -0.167716466 -0.280748134 -0.207942621  0.616124165  0.510508811
 [36] -0.032766630 -0.258781189 -0.072036675 -0.314365304  0.143162777
 [41] -0.017946352 -0.210257477  0.324252431  0.321377760  0.027139919
 [46]  0.345176546  0.068614928  0.021291439 -0.654173639  0.003914974
 [51] -0.014809112  0.597102516  0.461513545  0.645435224 -0.494286607
 [56] -0.605156038  0.029270347 -0.986914521 -0.036112399 -0.415396632
 [61]  0.296745909 -0.014390928 -0.178714054 -0.092660121 -0.195159119
 [66] -0.080406589  0.171772817  0.045463492  0.149696342 -0.403229680
 [71]  0.093126601 -0.209734468 -0.117926293  0.045122223  0.109478313
 [76] -0.108473152  0.129758911  0.107406261  0.715939738 -0.470334551
 [81]  0.361667242 -0.094147119 -0.046726408  0.198793812 -0.143031684
 [86] -0.599142628 -0.084151280  0.194688670  0.394548265 -0.099966366
 [91]  0.167327013  0.415531849  0.043831462  0.162834123 -0.230875740
 [96] -0.074600407  0.221460801 -0.199561084 -0.350864944 -0.189237690
[101]  0.138641486  0.394604565  0.356901146 -0.478848328  0.122860161
[106]  0.086002065 -0.338164694 -0.276713160 -0.186297089 -0.552592913
[111] -0.160383404  0.466747925  0.277456744  0.175963966  0.143911243
[116]  0.066540090 -0.271519212  0.165449312  0.036584032 -0.173483516
[121]  0.195733340  0.081777916 -0.135603076 -0.216180540  0.060885938
[126]  0.314006863  0.073397420  0.030584276 -0.101943979  0.026640670
[131] -0.165160153  0.155941130  0.107256192 -0.142647983  0.237545613
[136] -0.626193352 -0.041725277 -0.269304268 -0.405148922  0.717079402
[141] -0.082203053 -0.120277559 -0.054353131 -0.090684925  0.140315329
[146]  0.296142686 -0.091993098 -0.198707894 -0.109044296 -0.011190074
[151]  0.142051334 -0.092284758  0.263914322 -0.131958832  0.208475722
[156] -0.544886507 -0.329323295  0.312126426 -0.285414252  0.104248046
[161]  0.161770660  0.476181902 -0.351617475 -0.031258892  0.122002151
[166] -0.296962740  0.139342797 -0.164979713  0.235971700 -0.089428363
[171] -0.309828438 -0.423383425  0.051938191 -0.015864173 -0.123741254
[176] -0.441113769 -0.554111479 -0.111258491  0.018659198  0.011280353
[181]  0.550702326  0.009060270  0.548077375  0.211070829 -0.256318682
[186] -0.104530405 -0.211386903  0.255144652  0.101062689  0.454325933
[191]  0.721325194  0.076060269 -0.030343175  0.028964106  0.405062997
[196]  0.014163042 -0.225039530 -0.016186604 -0.030421883  0.090626514
[201]  0.093167588  0.498369166 -0.221108926 -0.191833330 -0.192448252
[206] -0.218453539  0.073105402  0.197253920  0.155135981  0.097463128
[211] -0.131997081 -0.218672153  0.180735287 -0.498056292  0.356079723
[216]  0.055493898 -0.781970501 -0.111141744  0.333797502  0.547753587
[221]  0.338297827  0.548319211  0.063657897 -0.063019512  0.164483415
[226] -0.114045598 -0.063117345 -0.058062803  0.151532773 -0.120507641
> 
> proc.time()
   user  system elapsed 
  2.583  14.812  17.796 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.1 (2025-06-13) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000029f0000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000029f0000>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000029f0000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x6000029f0000>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x6000029fc000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000029fc000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x6000029fc000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000029fc000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000029fc000>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000298c0c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000298c0c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x60000298c0c0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x60000298c0c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x60000298c0c0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x60000298c0c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x60000298c0c0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x60000298c0c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x60000298c0c0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000298c240>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x60000298c240>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000298c240>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000298c240>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilefca211f60d5"  "BufferedMatrixFilefca2330e4086"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilefca211f60d5"  "BufferedMatrixFilefca2330e4086"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000298c4e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000298c4e0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x60000298c4e0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x60000298c4e0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x60000298c4e0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x60000298c4e0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000298c6c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000298c6c0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x60000298c6c0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x60000298c6c0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002988060>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002988060>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.354   0.141   0.488 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.1 (2025-06-13) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.321   0.088   0.398 

Example timings